{"title":"Algebraic cycles and triple $K3$ burgers","authors":"R. Laterveer","doi":"10.4310/ARKIV.2019.V57.N1.A9","DOIUrl":null,"url":null,"abstract":"We consider surfaces of geometric genus $3$ with the property that their transcendental cohomology splits into $3$ pieces, each piece coming from a $K3$ surface. For certain families of surfaces with this property, we can show there is a similar splitting on the level of Chow groups (and Chow motives).","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2019.V57.N1.A9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We consider surfaces of geometric genus $3$ with the property that their transcendental cohomology splits into $3$ pieces, each piece coming from a $K3$ surface. For certain families of surfaces with this property, we can show there is a similar splitting on the level of Chow groups (and Chow motives).