{"title":"On the Hardy number of a domain in terms of harmonic measure and hyperbolic distance","authors":"Christina Karafyllia","doi":"10.4310/arkiv.2020.v58.n2.a5","DOIUrl":null,"url":null,"abstract":"Let $\\psi $ be a conformal map on $\\mathbb{D}$ with $ \\psi \\left( 0 \\right)=0$ and let ${F_\\alpha }=\\left\\{ {z \\in \\mathbb{D}:\\left| {\\psi \\left( z \\right)} \\right| = \\alpha } \\right\\}$ for $\\alpha >0$. Denote by ${H^p}\\left( \\mathbb{D} \\right)$ the classical Hardy space with exponent $p>0$ and by ${\\tt h}\\left( \\psi \\right)$ the Hardy number of $\\psi$. Consider the limits $$ L:= \\lim_{\\alpha\\to+\\infty}\\left( \\log \\omega_{\\mathbb D}(0,F_{\\alpha})^{-1}/\\log \\alpha \\right), \\,\\, \\mu:= \\lim_{\\alpha\\to+\\infty}\\left( d_{\\mathbb D}(0,F_{\\alpha})/\\log\\alpha \\right),$$ where $\\omega _\\mathbb{D}\\left( {0,{F_\\alpha }} \\right)$ denotes the harmonic measure at $0$ of $F_\\alpha $ and $d_\\mathbb{D} {\\left( {0,{F_\\alpha }} \\right)}$ denotes the hyperbolic distance between $0$ and $F_\\alpha$ in $\\mathbb{D}$. We study a problem posed by P. Poggi-Corradini. What is the relation between $L$, $\\mu$ and ${\\tt h}\\left( \\psi \\right)$? We also provide conditions for the existence of $L$ and $\\mu$ and for the equalities $L=\\mu={\\tt h}\\left( \\psi \\right)$. Poggi-Corradini proved that $\\psi \\notin {H^{\\mu}}\\left( \\mathbb{D} \\right)$ for a wide class of conformal maps $\\psi$. We present an example of $\\psi$ such that $\\psi \\in {H^\\mu {\\left( \\mathbb{D} \\right)} }$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
Let $\psi $ be a conformal map on $\mathbb{D}$ with $ \psi \left( 0 \right)=0$ and let ${F_\alpha }=\left\{ {z \in \mathbb{D}:\left| {\psi \left( z \right)} \right| = \alpha } \right\}$ for $\alpha >0$. Denote by ${H^p}\left( \mathbb{D} \right)$ the classical Hardy space with exponent $p>0$ and by ${\tt h}\left( \psi \right)$ the Hardy number of $\psi$. Consider the limits $$ L:= \lim_{\alpha\to+\infty}\left( \log \omega_{\mathbb D}(0,F_{\alpha})^{-1}/\log \alpha \right), \,\, \mu:= \lim_{\alpha\to+\infty}\left( d_{\mathbb D}(0,F_{\alpha})/\log\alpha \right),$$ where $\omega _\mathbb{D}\left( {0,{F_\alpha }} \right)$ denotes the harmonic measure at $0$ of $F_\alpha $ and $d_\mathbb{D} {\left( {0,{F_\alpha }} \right)}$ denotes the hyperbolic distance between $0$ and $F_\alpha$ in $\mathbb{D}$. We study a problem posed by P. Poggi-Corradini. What is the relation between $L$, $\mu$ and ${\tt h}\left( \psi \right)$? We also provide conditions for the existence of $L$ and $\mu$ and for the equalities $L=\mu={\tt h}\left( \psi \right)$. Poggi-Corradini proved that $\psi \notin {H^{\mu}}\left( \mathbb{D} \right)$ for a wide class of conformal maps $\psi$. We present an example of $\psi$ such that $\psi \in {H^\mu {\left( \mathbb{D} \right)} }$.