{"title":"Remarks on random walks on graphs and the Floyd boundary","authors":"P. Spanos","doi":"10.4310/arkiv.2022.v60.n1.a8","DOIUrl":null,"url":null,"abstract":"We show that for a uniformly irreducible random walk on a graph, with bounded range, there is a Floyd function for which the random walk converges to its corresponding Floyd boundary. Moreover if we add the assumptions, p(n)(v,w) ≤ Cρ, where ρ < 1 is the spectral radius, then for any Floyd function f that satisfies ∑∞ n=1 nf(n) < ∞, the Dirichlet problem with respect to the Floyd boundary is solvable.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We show that for a uniformly irreducible random walk on a graph, with bounded range, there is a Floyd function for which the random walk converges to its corresponding Floyd boundary. Moreover if we add the assumptions, p(n)(v,w) ≤ Cρ, where ρ < 1 is the spectral radius, then for any Floyd function f that satisfies ∑∞ n=1 nf(n) < ∞, the Dirichlet problem with respect to the Floyd boundary is solvable.