{"title":"On Laplace–Carleson embeddings, and $L^p$-mapping properties of the Fourier transform","authors":"E. Rydhe","doi":"10.4310/arkiv.2020.v58.n2.a10","DOIUrl":null,"url":null,"abstract":"We investigate so-called Laplace--Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff--Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
We investigate so-called Laplace--Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff--Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.