On systems of non-overlapping Haar polynomials

IF 0.8 4区 数学 Q2 MATHEMATICS
G. Karagulyan
{"title":"On systems of non-overlapping Haar polynomials","authors":"G. Karagulyan","doi":"10.4310/arkiv.2020.v58.n1.a8","DOIUrl":null,"url":null,"abstract":"We prove that $\\log n$ is an almost everywhere convergence Weyl multiplier for the orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general systems of martingale difference polynomials.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n1.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that $\log n$ is an almost everywhere convergence Weyl multiplier for the orthonormal systems of non-overlapping Haar polynomials. Moreover, it is done for the general systems of martingale difference polynomials.
关于非重叠Haar多项式系统
我们证明了$\log n$对于非重叠Haar多项式的正交系统是一个几乎处处收敛的Weyl乘子。此外,还对一般的鞅差分多项式系统进行了求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信