{"title":"Equivariant $L^2$-Euler characteristics of $G\\textrm{-}CW$-complexes","authors":"J. Jo","doi":"10.4310/ARKIV.2017.V55.N1.A7","DOIUrl":null,"url":null,"abstract":"We show that if $X$ is a cocompact $G\\textrm{-}CW$-complex such that each isotropy subgroup $G_\\sigma$ is $L^{(2)}$-good over an arbitrary commutative ring $k$, then $X$ satisfies some fixed-point formula which is an $L^{(2)}$-analogue of Brown’s formula in 1982. Using this result we present a fixed point formula for a cocompact proper $G\\textrm{-}CW$-complex which relates the equivariant $L^{(2)}$-Euler characteristic of a fixed point $CW$-complex $X^s$ and the Euler characteristic of $X/G$. As corollaries, we prove Atiyah’s theorem in 1976, Akita’s formula in 1999 and a result of Chatterji–Mislin in 2009. We also show that if X is a free $G\\textrm{-}CW$-complex such that $C_{*} (X)$ is chain homotopy equivalent to a chain complex of finitely generated projective $Z \\pi_1 (X)$-modules of finite length and $X$ satisfies some fixed-point formula over $\\mathbb{Q}$ or $\\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula, then $\\chi (X/G) = \\chi^{(2)} (X)$. As an application, we prove that the weak Bass conjecture holds for any finitely presented group $G$ satisfying the following condition: for any finitely dominated $CW$-complex $Y$ with $\\pi_1 (Y)=G, \\widetilde{Y}$ satisfies some fixed-point formula over $\\mathbb{Q}$ or $\\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that if $X$ is a cocompact $G\textrm{-}CW$-complex such that each isotropy subgroup $G_\sigma$ is $L^{(2)}$-good over an arbitrary commutative ring $k$, then $X$ satisfies some fixed-point formula which is an $L^{(2)}$-analogue of Brown’s formula in 1982. Using this result we present a fixed point formula for a cocompact proper $G\textrm{-}CW$-complex which relates the equivariant $L^{(2)}$-Euler characteristic of a fixed point $CW$-complex $X^s$ and the Euler characteristic of $X/G$. As corollaries, we prove Atiyah’s theorem in 1976, Akita’s formula in 1999 and a result of Chatterji–Mislin in 2009. We also show that if X is a free $G\textrm{-}CW$-complex such that $C_{*} (X)$ is chain homotopy equivalent to a chain complex of finitely generated projective $Z \pi_1 (X)$-modules of finite length and $X$ satisfies some fixed-point formula over $\mathbb{Q}$ or $\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula, then $\chi (X/G) = \chi^{(2)} (X)$. As an application, we prove that the weak Bass conjecture holds for any finitely presented group $G$ satisfying the following condition: for any finitely dominated $CW$-complex $Y$ with $\pi_1 (Y)=G, \widetilde{Y}$ satisfies some fixed-point formula over $\mathbb{Q}$ or $\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula.