Equivariant $L^2$-Euler characteristics of $G\textrm{-}CW$-complexes

IF 0.8 4区 数学 Q2 MATHEMATICS
J. Jo
{"title":"Equivariant $L^2$-Euler characteristics of $G\\textrm{-}CW$-complexes","authors":"J. Jo","doi":"10.4310/ARKIV.2017.V55.N1.A7","DOIUrl":null,"url":null,"abstract":"We show that if $X$ is a cocompact $G\\textrm{-}CW$-complex such that each isotropy subgroup $G_\\sigma$ is $L^{(2)}$-good over an arbitrary commutative ring $k$, then $X$ satisfies some fixed-point formula which is an $L^{(2)}$-analogue of Brown’s formula in 1982. Using this result we present a fixed point formula for a cocompact proper $G\\textrm{-}CW$-complex which relates the equivariant $L^{(2)}$-Euler characteristic of a fixed point $CW$-complex $X^s$ and the Euler characteristic of $X/G$. As corollaries, we prove Atiyah’s theorem in 1976, Akita’s formula in 1999 and a result of Chatterji–Mislin in 2009. We also show that if X is a free $G\\textrm{-}CW$-complex such that $C_{*} (X)$ is chain homotopy equivalent to a chain complex of finitely generated projective $Z \\pi_1 (X)$-modules of finite length and $X$ satisfies some fixed-point formula over $\\mathbb{Q}$ or $\\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula, then $\\chi (X/G) = \\chi^{(2)} (X)$. As an application, we prove that the weak Bass conjecture holds for any finitely presented group $G$ satisfying the following condition: for any finitely dominated $CW$-complex $Y$ with $\\pi_1 (Y)=G, \\widetilde{Y}$ satisfies some fixed-point formula over $\\mathbb{Q}$ or $\\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if $X$ is a cocompact $G\textrm{-}CW$-complex such that each isotropy subgroup $G_\sigma$ is $L^{(2)}$-good over an arbitrary commutative ring $k$, then $X$ satisfies some fixed-point formula which is an $L^{(2)}$-analogue of Brown’s formula in 1982. Using this result we present a fixed point formula for a cocompact proper $G\textrm{-}CW$-complex which relates the equivariant $L^{(2)}$-Euler characteristic of a fixed point $CW$-complex $X^s$ and the Euler characteristic of $X/G$. As corollaries, we prove Atiyah’s theorem in 1976, Akita’s formula in 1999 and a result of Chatterji–Mislin in 2009. We also show that if X is a free $G\textrm{-}CW$-complex such that $C_{*} (X)$ is chain homotopy equivalent to a chain complex of finitely generated projective $Z \pi_1 (X)$-modules of finite length and $X$ satisfies some fixed-point formula over $\mathbb{Q}$ or $\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula, then $\chi (X/G) = \chi^{(2)} (X)$. As an application, we prove that the weak Bass conjecture holds for any finitely presented group $G$ satisfying the following condition: for any finitely dominated $CW$-complex $Y$ with $\pi_1 (Y)=G, \widetilde{Y}$ satisfies some fixed-point formula over $\mathbb{Q}$ or $\mathbb{C}$ which is an $L^{(2)}$-analogue of Brown’s formula.
$G\textrm{-}CW$-配合物的等变$L^2$-欧拉特性
我们证明,如果$X$是紧致$G\textrm{-}CW$ -复,使得每个各向同性子群$G_\sigma$在任意交换环$k$上都是$L^{(2)}$ -好,则$X$满足某种不动点公式,该公式是1982年Brown公式的$L^{(2)}$ -类似物。利用这一结果,我们给出了紧实固有$G\textrm{-}CW$ -络合物的不动点公式,该公式将不动点$CW$ -络合物$X^s$的等变$L^{(2)}$ -欧拉特性与$X/G$的欧拉特性联系起来。作为推论,我们分别证明了1976年的Atiyah定理、1999年的Akita公式和2009年的Chatterji-Mislin结果。我们还证明,如果X是一个自由的$G\textrm{-}CW$ -复合体,使得$C_{*} (X)$是链同伦等价于有限生成的有限长度的投影$Z \pi_1 (X)$ -模的链复合体,并且$X$满足$\mathbb{Q}$或$\mathbb{C}$上的某个不动点公式,该公式是Brown公式的$L^{(2)}$ -类似物,则$\chi (X/G) = \chi^{(2)} (X)$。作为一个应用,我们证明了弱Bass猜想对于满足以下条件的任何有限呈现群$G$成立:对于具有$\pi_1 (Y)=G, \widetilde{Y}$的任何有限支配的$CW$ -复合体$Y$满足$\mathbb{Q}$或$\mathbb{C}$上的不动点公式,该公式是Brown公式的$L^{(2)}$ -类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信