{"title":"Nucleosome dynamics: HMGB1 facilitates nucleosome restructuring and collaborates in estrogen-responsive gene expression","authors":"W. Scovell","doi":"10.3934/genet.2016.4.252","DOIUrl":null,"url":null,"abstract":"Abstract The genome in the human cell is extraordinarily compacted in the nucleus. As a result, much of the DNA is inaccessible and functionally inert. Notwithstanding the highly efficient packaging, mechanisms have evolved to render DNA sites accessible that then enable a multitude of factors to carry out ongoing and vital functions. The compaction is derived from DNA complexation within nucleosomes, which can further consolidate into a higher-order chromatin structure. The nucleosome and nucleosomal DNA are not static in nature, but are dynamic, undergoing structural and functional changes as the cell responds to stresses and/or metabolic or environmental cues. We are only beginning to understand the forces and the complexes that engage the nucleosome to unearth the tightly bound and inaccessible DNA sequences and provide an opening to more accessible target sites. In many cases, current findings support a major role for the action of ATP-dependent chromatin remodeling complexes (CRCs) in providing an avenue to factor accessibility that leads to the activation of transcription. The estrogen receptor α (ERα) does not bind to the estrogen response element (ERE) in the canonical nucleosome. However, evidence will be presented that HMGB1 restructures the nucleosome in an ATP-independent manner and also facilitates access and strong binding of ERα to ERE. The features that appear important in the mechanism of action for HMGB1 will be highlighted, in addition to the characteristic features of the restructured nucleosome. These findings, together with previous evidence, suggest a collaborative role for HMGB1 in the step-wise transcription of estrogen-responsive genes. In addition, alternate mechanistic pathways will be discussed, with consideration that “HMGB1 restructuring” of the nucleosome may generally be viewed as a perturbation of the equilibrium of an ensemble of nearly isoenergetic nucleosome states in an energy landscape that is driven by conformational selection by HMGB1.","PeriodicalId":43477,"journal":{"name":"AIMS Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/genet.2016.4.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The genome in the human cell is extraordinarily compacted in the nucleus. As a result, much of the DNA is inaccessible and functionally inert. Notwithstanding the highly efficient packaging, mechanisms have evolved to render DNA sites accessible that then enable a multitude of factors to carry out ongoing and vital functions. The compaction is derived from DNA complexation within nucleosomes, which can further consolidate into a higher-order chromatin structure. The nucleosome and nucleosomal DNA are not static in nature, but are dynamic, undergoing structural and functional changes as the cell responds to stresses and/or metabolic or environmental cues. We are only beginning to understand the forces and the complexes that engage the nucleosome to unearth the tightly bound and inaccessible DNA sequences and provide an opening to more accessible target sites. In many cases, current findings support a major role for the action of ATP-dependent chromatin remodeling complexes (CRCs) in providing an avenue to factor accessibility that leads to the activation of transcription. The estrogen receptor α (ERα) does not bind to the estrogen response element (ERE) in the canonical nucleosome. However, evidence will be presented that HMGB1 restructures the nucleosome in an ATP-independent manner and also facilitates access and strong binding of ERα to ERE. The features that appear important in the mechanism of action for HMGB1 will be highlighted, in addition to the characteristic features of the restructured nucleosome. These findings, together with previous evidence, suggest a collaborative role for HMGB1 in the step-wise transcription of estrogen-responsive genes. In addition, alternate mechanistic pathways will be discussed, with consideration that “HMGB1 restructuring” of the nucleosome may generally be viewed as a perturbation of the equilibrium of an ensemble of nearly isoenergetic nucleosome states in an energy landscape that is driven by conformational selection by HMGB1.