Comparison of geometric proof development tasks as set up in the textbook and as implemented by teachers in the classroom

IF 0.3 Q4 EDUCATION, SCIENTIFIC DISCIPLINES
Lisnet Mwadzaangati
{"title":"Comparison of geometric proof development tasks as set up in the textbook and as implemented by teachers in the classroom","authors":"Lisnet Mwadzaangati","doi":"10.4102/pythagoras.v40i1.458","DOIUrl":null,"url":null,"abstract":"One of the aims of teaching secondary school mathematics in Malawi is to promote learners’ logical reasoning, problem-solving and critical thinking skills (Ministry of Education, Science and Technology [MEST], 2013). Euclidean geometry is regarded as the main area of mathematics that is a key source for teaching mathematical argumentation and proof, developing learners’ deductive reasoning and critical thinking (Kunimune, Fujita, & Jones, 2010). But the Malawi National Examinations Board (MANEB) chief examiners’ reports indicate that secondary school learners fail to develop geometric proofs at national examinations (MANEB, 2013). Poor teaching practices are highlighted as a major cause of learners’ inability to understand geometric proof development (MANEB, 2013). The reports emphasise that due to lack of both content knowledge and pedagogical knowledge, the teachers are not creative in conducting effective lessons to support learners’ understanding of geometric proof development. Studies conducted in different parts of the world also indicate that despite the importance of reasoning and proving in learners’ learning, many learners face serious challenges in proof development (Kunimune et al., 2010; Otten, Males & Gibertson, 2014; Stylianides, 2014). These studies support MANEB’s by arguing that learners’ challenges in proof development should be attributed more to classroom inappropriate practices that mainly emphasise rules of verification and devalue or omit exploration. As a result, the learners memorise the rules without understanding the process of proof development; hence, they are able to reproduce similar proofs but cannot apply the principles to develop a different proof (Ding & Jones, 2009). Use of exploratory teaching strategies is suggested as one way of helping learners to understand geometric proof development (Ding & Jones, 2009; Jones et al., 2009). This implies that the solution for improving classroom practices for enhancing learners’ understanding of geometric proof development lies in teacher professional development and teacher education.","PeriodicalId":43521,"journal":{"name":"Pythagoras","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4102/pythagoras.v40i1.458","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/pythagoras.v40i1.458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 4

Abstract

One of the aims of teaching secondary school mathematics in Malawi is to promote learners’ logical reasoning, problem-solving and critical thinking skills (Ministry of Education, Science and Technology [MEST], 2013). Euclidean geometry is regarded as the main area of mathematics that is a key source for teaching mathematical argumentation and proof, developing learners’ deductive reasoning and critical thinking (Kunimune, Fujita, & Jones, 2010). But the Malawi National Examinations Board (MANEB) chief examiners’ reports indicate that secondary school learners fail to develop geometric proofs at national examinations (MANEB, 2013). Poor teaching practices are highlighted as a major cause of learners’ inability to understand geometric proof development (MANEB, 2013). The reports emphasise that due to lack of both content knowledge and pedagogical knowledge, the teachers are not creative in conducting effective lessons to support learners’ understanding of geometric proof development. Studies conducted in different parts of the world also indicate that despite the importance of reasoning and proving in learners’ learning, many learners face serious challenges in proof development (Kunimune et al., 2010; Otten, Males & Gibertson, 2014; Stylianides, 2014). These studies support MANEB’s by arguing that learners’ challenges in proof development should be attributed more to classroom inappropriate practices that mainly emphasise rules of verification and devalue or omit exploration. As a result, the learners memorise the rules without understanding the process of proof development; hence, they are able to reproduce similar proofs but cannot apply the principles to develop a different proof (Ding & Jones, 2009). Use of exploratory teaching strategies is suggested as one way of helping learners to understand geometric proof development (Ding & Jones, 2009; Jones et al., 2009). This implies that the solution for improving classroom practices for enhancing learners’ understanding of geometric proof development lies in teacher professional development and teacher education.
几何证明开发任务在教科书上的设置和教师在课堂上的实施的比较
马拉维中学数学教学的目标之一是提高学习者的逻辑推理、解决问题和批判性思维能力(教育部,科学和技术[MEST], 2013)。欧几里得几何被认为是数学的主要领域,是教学数学论证和证明的关键来源,发展学习者的演绎推理和批判性思维(Kunimune, Fujita, & Jones, 2010)。但马拉维国家考试委员会(MANEB)首席考官的报告表明,中学学生未能在国家考试中发展几何证明(MANEB, 2013)。糟糕的教学实践被强调为学习者无法理解几何证明发展的主要原因(MANEB, 2013)。报告强调,由于缺乏内容知识和教学知识,教师在开展有效课程以支持学习者理解几何证明发展方面缺乏创造性。在世界不同地区进行的研究也表明,尽管推理和证明在学习者的学习中很重要,但许多学习者在证明发展方面面临严重挑战(Kunimune et al., 2010;Otten, Males & Gibertson, 2014;Stylianides, 2014)。这些研究支持MANEB的观点,认为学习者在证据开发方面的挑战应该更多地归因于课堂上不恰当的做法,这些做法主要强调验证规则,贬低或忽略探索。因此,学习者在不了解证明发展过程的情况下记忆规则;因此,他们能够复制类似的证明,但不能应用这些原理来开发不同的证明(Ding & Jones, 2009)。探索性教学策略被认为是帮助学习者理解几何证明发展的一种方式(Ding & Jones, 2009;Jones et al., 2009)。这意味着,提高课堂实践水平,增强学习者对几何证明展开的理解,解决之道在于教师专业发展和教师教育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pythagoras
Pythagoras EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
1.50
自引率
16.70%
发文量
12
审稿时长
20 weeks
期刊介绍: Pythagoras is a scholarly research journal that provides a forum for the presentation and critical discussion of current research and developments in mathematics education at both national and international level. Pythagoras publishes articles that significantly contribute to our understanding of mathematics teaching, learning and curriculum studies, including reports of research (experiments, case studies, surveys, philosophical and historical studies, etc.), critical analyses of school mathematics curricular and teacher development initiatives, literature reviews, theoretical analyses, exposition of mathematical thinking (mathematical practices) and commentaries on issues relating to the teaching and learning of mathematics at all levels of education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信