Bi-LSTM based deep learning method for 5G signal detection and channel estimation

Q3 Engineering
D. Ratnam, K. N. Rao
{"title":"Bi-LSTM based deep learning method for 5G signal detection and channel estimation","authors":"D. Ratnam, K. N. Rao","doi":"10.3934/electreng.2021017","DOIUrl":null,"url":null,"abstract":"The advanced neural network methods solve significant signal estimation and channel characterization difficulties in the next-generation 5G wireless communication systems. The number of transmitted signal copies received through multiple paths at the receiver leads to delay spread, which intern causes interference in communication. These adverse effects of the interference can be mitigated with the orthogonal frequency division modulation (OFDM) technique. Furthermore, the proper signal detection methods optimal channel estimation enhances the performance of the multicarrier wireless communication system. In this paper, bi-directional long short-term memory (Bi-LSTM) based deep learning method is implemented to estimate the channel in different multipath scenarios. The impact of the pilots and cyclic prefix on the performance of Bi LSTM algorithm is analyzed. It is evident from the symbol-error rate (SER) results that the Bi-LSTM algorithm performs better than the state of art channel estimation methods known as the Minimum Mean Square and Error (MMSE) estimation method.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2021017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

Abstract

The advanced neural network methods solve significant signal estimation and channel characterization difficulties in the next-generation 5G wireless communication systems. The number of transmitted signal copies received through multiple paths at the receiver leads to delay spread, which intern causes interference in communication. These adverse effects of the interference can be mitigated with the orthogonal frequency division modulation (OFDM) technique. Furthermore, the proper signal detection methods optimal channel estimation enhances the performance of the multicarrier wireless communication system. In this paper, bi-directional long short-term memory (Bi-LSTM) based deep learning method is implemented to estimate the channel in different multipath scenarios. The impact of the pilots and cyclic prefix on the performance of Bi LSTM algorithm is analyzed. It is evident from the symbol-error rate (SER) results that the Bi-LSTM algorithm performs better than the state of art channel estimation methods known as the Minimum Mean Square and Error (MMSE) estimation method.
基于Bi-LSTM的5G信号检测与信道估计深度学习方法
先进的神经网络方法解决了下一代5G无线通信系统中重要的信号估计和信道表征困难。接收端通过多个路径接收到的发送信号副本的数量导致延迟扩散,从而导致通信干扰。这些干扰的不利影响可以通过正交频分调制(OFDM)技术得到缓解。此外,适当的信号检测方法和最优的信道估计可以提高多载波无线通信系统的性能。本文实现了基于双向长短期记忆(Bi-LSTM)的深度学习方法来估计不同多径场景下的信道。分析了导频和循环前缀对双LSTM算法性能的影响。从符号错误率(SER)结果中可以明显看出,Bi-LSTM算法比最先进的信道估计方法(即最小均方误差(MMSE)估计方法)性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信