S. Miclaus, D. Deaconescu, D. Vatamanu, A. Buda, A. Sârbu, Bogdan Pindaru
{"title":"Peculiarities of the radiated field in the vicinity of a mobile terminal connected to 4G versus 5G networks during various applications usage","authors":"S. Miclaus, D. Deaconescu, D. Vatamanu, A. Buda, A. Sârbu, Bogdan Pindaru","doi":"10.3934/electreng.2022010","DOIUrl":null,"url":null,"abstract":"Realistic human exposures to radiation emitted by a mobile terminal connected to either a 5G network (sub-6 GHz) or to a 4G network have been scarcely assessed till now. Present experimental work aimed at comparing the radiated field in air, in a single point situated at 10 cm from a mobile phone when running a set of 5 mobile applications in the two communication standards. The time-evolution of the electric field strength in air near the terminal during 25 s of use was recorded by an original method, together with the data rate of transmission. The emitted power density dynamics, its statistics, its slope of accumulation after the usage period and its average value per transmitted bit are analyzed and compared between all the situations. The peculiarities are emphasized and they are proved to depend on the communication standard and on the mobile application.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2022010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
Realistic human exposures to radiation emitted by a mobile terminal connected to either a 5G network (sub-6 GHz) or to a 4G network have been scarcely assessed till now. Present experimental work aimed at comparing the radiated field in air, in a single point situated at 10 cm from a mobile phone when running a set of 5 mobile applications in the two communication standards. The time-evolution of the electric field strength in air near the terminal during 25 s of use was recorded by an original method, together with the data rate of transmission. The emitted power density dynamics, its statistics, its slope of accumulation after the usage period and its average value per transmitted bit are analyzed and compared between all the situations. The peculiarities are emphasized and they are proved to depend on the communication standard and on the mobile application.