Two discrete Mittag-Leffler extensions of the Cayley-exponential function

IF 1.8 3区 数学 Q1 MATHEMATICS
T. Abdeljawad
{"title":"Two discrete Mittag-Leffler extensions of the Cayley-exponential function","authors":"T. Abdeljawad","doi":"10.3934/math.2023687","DOIUrl":null,"url":null,"abstract":"Nabla discrete fractional Mittag-Leffler (ML) functions are the key of discrete fractional calculus within nabla analysis since they extend nabla discrete exponential functions. In this article, we define two new nabla discrete ML functions depending on the Cayley-exponential function on time scales. While, the nabla discrete ML function $ E_{\\overline{\\gamma}} (\\lambda, t) $ converges for $ |\\lambda| < 1 $, both of the defined discrete functions converge for more relaxed $ \\lambda $. The nabla discrete Laplace transforms of the newly defined functions are calculated and confirmed as well. Some illustrative graphs for the two extensions are provided.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023687","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nabla discrete fractional Mittag-Leffler (ML) functions are the key of discrete fractional calculus within nabla analysis since they extend nabla discrete exponential functions. In this article, we define two new nabla discrete ML functions depending on the Cayley-exponential function on time scales. While, the nabla discrete ML function $ E_{\overline{\gamma}} (\lambda, t) $ converges for $ |\lambda| < 1 $, both of the defined discrete functions converge for more relaxed $ \lambda $. The nabla discrete Laplace transforms of the newly defined functions are calculated and confirmed as well. Some illustrative graphs for the two extensions are provided.
cayley指数函数的两个离散Mittag-Leffler扩展
Nabla离散分数阶Mittag-Leffler (ML)函数是Nabla离散指数函数的扩展,是离散分数阶微积分在Nabla分析中的关键。在本文中,我们定义了两个新的基于时间尺度上的Cayley-exponential函数的nabla离散ML函数。而nabla离散ML函数$ E_{\overline{\gamma}} (\lambda, t) $对于$ |\lambda| < 1 $是收敛的,两个定义的离散函数对于更宽松的$ \lambda $是收敛的。计算并确定了新定义函数的纳布拉离散拉普拉斯变换。为这两个扩展提供了一些说明性图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信