Characterizations of modules definable in o-minimal structures

IF 1.8 3区 数学 Q1 MATHEMATICS
Jaruwat Rodbanjong, Athipat Thamrongthanyalak
{"title":"Characterizations of modules definable in o-minimal structures","authors":"Jaruwat Rodbanjong, Athipat Thamrongthanyalak","doi":"10.3934/math.2023660","DOIUrl":null,"url":null,"abstract":"Let $ \\mathfrak M $ be an o-minimal expansion of a densely linearly ordered set and $ (S, +, \\cdot, 0_S, 1_S) $ be a ring definable in $ \\mathfrak M $. In this article, we develop two techniques for the study of characterizations of $ S $-modules definable in $ \\mathfrak M $. The first technique is an algebraic technique. More precisely, we show that every $ S $-module definable in $ \\mathfrak M $ is finitely generated. For the other technique, we prove that every $ S $-module definable in $ \\mathfrak M $ admits a unique definable $ S $-module manifold topology. As consequences, we obtain the following: (1) if $ S $ is finite, then a module $ A $ is isomorphic to an $ S $-module definable in $ \\mathfrak M $ if and only if $ A $ is finite; (2) if $ S $ is an infinite ring without zero divisors, then a module $ A $ is isomorphic to an $ S $-module definable in $ \\mathfrak M $ if and only if $ A $ is a finite dimensional free module over $ S $; and (3) if $ \\mathfrak M $ is an expansion of an ordered divisible abelian group and $ S $ is an infinite ring without zero divisors, then every $ S $-module definable in $ \\mathfrak M $ is definably connected with respect to the unique definable $ S $-module manifold topology.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023660","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $ \mathfrak M $ be an o-minimal expansion of a densely linearly ordered set and $ (S, +, \cdot, 0_S, 1_S) $ be a ring definable in $ \mathfrak M $. In this article, we develop two techniques for the study of characterizations of $ S $-modules definable in $ \mathfrak M $. The first technique is an algebraic technique. More precisely, we show that every $ S $-module definable in $ \mathfrak M $ is finitely generated. For the other technique, we prove that every $ S $-module definable in $ \mathfrak M $ admits a unique definable $ S $-module manifold topology. As consequences, we obtain the following: (1) if $ S $ is finite, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is finite; (2) if $ S $ is an infinite ring without zero divisors, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is a finite dimensional free module over $ S $; and (3) if $ \mathfrak M $ is an expansion of an ordered divisible abelian group and $ S $ is an infinite ring without zero divisors, then every $ S $-module definable in $ \mathfrak M $ is definably connected with respect to the unique definable $ S $-module manifold topology.
0 -极小结构中可定义模块的刻画
设$ \mathfrak M $是一个密集线性有序集的0极小展开,并且$ (S, +, \cdot, 0_S, 1_S) $是一个可在$ \mathfrak M $中定义的环。在本文中,我们开发了两种技术来研究$ S $-可在$ $ mathfrak M $中定义的模块的表征。第一个技巧是代数技巧。更准确地说,我们证明了在$ \mathfrak M $中可定义的每个$ S $模块都是有限生成的。对于另一种技术,我们证明了在$ \ mathfrk M $中可定义的每个$ S $-模都有一个唯一的可定义$ S $-模流形拓扑。由此得到:(1)如果$ S $是有限的,则当且仅当$ a $是有限的,则模$ a $同构于$ S $-可在$ \ mathfrk M $中定义的模$ S $;(2)如果$ S $是无零因子的无限环,则当且仅当$ a $是$ S $上的有限维自由模时,模$ a $同构于$ S $-可定义在$ \ mathfrk M $中的模$ S $;(3)如果$ \mathfrak M $是有序可除阿贝群的展开式,$ S $是无零因子的无限环,则$ \mathfrak M $中每个$ S $-模都与唯一可定义的$ S $-模流形拓扑可定义连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信