A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces

IF 1.8 3区 数学 Q1 MATHEMATICS
Junaid Ahmad, K. Ullah, H. Hammad, R. George
{"title":"A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces","authors":"Junaid Ahmad, K. Ullah, H. Hammad, R. George","doi":"10.3934/math.2023636","DOIUrl":null,"url":null,"abstract":"This manuscript is devoted to presenting some convergence results of a three-step iterative scheme under the Chatterjea–Suzuki–C ((CSC), for short) condition in the setting of a Banach space. Also, an example of mappings satisfying the (CSC) condition with a unique fixed point is provided. This example proves that the proposed scheme converges to a fixed point of a weak contraction faster than some known and leading schemes. Finally, our main results will be applied to find a solution to functional and fractional differential equations (FDEs) as an application.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023636","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

This manuscript is devoted to presenting some convergence results of a three-step iterative scheme under the Chatterjea–Suzuki–C ((CSC), for short) condition in the setting of a Banach space. Also, an example of mappings satisfying the (CSC) condition with a unique fixed point is provided. This example proves that the proposed scheme converges to a fixed point of a weak contraction faster than some known and leading schemes. Finally, our main results will be applied to find a solution to functional and fractional differential equations (FDEs) as an application.
Banach空间中一类分数阶微分方程的新颖不动点法解
本文给出了Banach空间下Chatterjea-Suzuki-C(简称CSC)条件下三步迭代方案的一些收敛结果。此外,还提供了一个具有唯一不动点的满足(CSC)条件的映射示例。通过实例证明了该方案收敛于弱收缩不动点的速度比一些已知的和领先的方案要快。最后,我们的主要结果将被应用于寻找一个解的功能和分数阶微分方程(FDEs)作为一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信