Iterative schemes for numerical reckoning of fixed points of new nonexpansive mappings with an application

IF 1.8 3区 数学 Q1 MATHEMATICS
K. Ullah, Junaid Ahmad, H. Hammad, R. George
{"title":"Iterative schemes for numerical reckoning of fixed points of new nonexpansive mappings with an application","authors":"K. Ullah, Junaid Ahmad, H. Hammad, R. George","doi":"10.3934/math.2023543","DOIUrl":null,"url":null,"abstract":"The goal of this manuscript is to introduce a new class of generalized nonexpansive operators, called $ (\\alpha, \\beta, \\gamma) $-nonexpansive mappings. Furthermore, some related properties of these mappings are investigated in a general Banach space. Moreover, the proposed operators utilized in the $ K $-iterative technique estimate the fixed point and examine its behavior. Also, two examples are provided to support our main results. The numerical results clearly show that the $ K $-iterative approach converges more quickly when used with this new class of operators. Ultimately, we used the $ K $-type iterative method to solve a variational inequality problem on a Hilbert space.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023543","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this manuscript is to introduce a new class of generalized nonexpansive operators, called $ (\alpha, \beta, \gamma) $-nonexpansive mappings. Furthermore, some related properties of these mappings are investigated in a general Banach space. Moreover, the proposed operators utilized in the $ K $-iterative technique estimate the fixed point and examine its behavior. Also, two examples are provided to support our main results. The numerical results clearly show that the $ K $-iterative approach converges more quickly when used with this new class of operators. Ultimately, we used the $ K $-type iterative method to solve a variational inequality problem on a Hilbert space.
新非扩张映射不动点数值推算的迭代格式及其应用
本文的目的是介绍一类新的广义非扩张算子,称为$ (\alpha, \beta, \gamma) $ -非扩张映射。进一步研究了一般Banach空间中这些映射的一些相关性质。此外,在$ K $ -迭代技术中使用的算子估计不动点并检查其行为。此外,还提供了两个示例来支持我们的主要结果。数值结果清楚地表明$ K $ -迭代方法在使用这类新算子时收敛速度更快。最后,我们使用$ K $型迭代方法解决了Hilbert空间上的变分不等式问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信