{"title":"Discrete Erlang-2 distribution and its application to leukemia and COVID-19","authors":"Mohamed Ahmed Mosilhy","doi":"10.3934/math.2023520","DOIUrl":null,"url":null,"abstract":"Via the survival discretization method, this research revealed a novel discrete one-parameter distribution known as the discrete Erlang-2 distribution (DE2). The new distribution has numerous surprising improvements over many conventional discrete distributions, particularly when analyzing excessively dispersed count data. Moments and moments-generating functions, a few descriptive measures (central tendency and dispersion), monotonicity of the probability mass function, and the hazard rate function are just a few of the statistical aspects of the postulated distribution that have been developed. The single parameter of the DE2 distribution was estimated via the maximum likelihood technique. Real-world datasets, leukemia and COVID-19, were applied to analyze the effectiveness of the recommended distribution.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023520","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Via the survival discretization method, this research revealed a novel discrete one-parameter distribution known as the discrete Erlang-2 distribution (DE2). The new distribution has numerous surprising improvements over many conventional discrete distributions, particularly when analyzing excessively dispersed count data. Moments and moments-generating functions, a few descriptive measures (central tendency and dispersion), monotonicity of the probability mass function, and the hazard rate function are just a few of the statistical aspects of the postulated distribution that have been developed. The single parameter of the DE2 distribution was estimated via the maximum likelihood technique. Real-world datasets, leukemia and COVID-19, were applied to analyze the effectiveness of the recommended distribution.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.