Effect of combining acid modification and heat-moisture treatment (HMT) on resistant starch content: A systematic review

IF 1.9 Q2 AGRICULTURE, MULTIDISCIPLINARY
Ratu Reni Budiyanti, D. Faridah, Nurlia Wulandari, A. Jayanegara, Frendy Ahmad Afandi
{"title":"Effect of combining acid modification and heat-moisture treatment (HMT) on resistant starch content: A systematic review","authors":"Ratu Reni Budiyanti, D. Faridah, Nurlia Wulandari, A. Jayanegara, Frendy Ahmad Afandi","doi":"10.3934/agrfood.2023025","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes mellitus (DMT2) is a metabolic disease that is increasingly attracting public attention. Diabetes mellitus is expected to reach 439 million in the world in 2030. Resistant starch (RS) is an indigestible starch which has health properties which has health properties that can be used for preventing diabetes mellitus type 2. In order to increase the RS content, a dual modification method consisted of acidification and heat moisture treatment (HMT) can be applied. The Acid-HMT method is affected by various factors, i.e., acid types, acid concentration, water content ratio, HMT temperature and HMT processing time, and different treatments may result in different RS yields. This study aimed to analyze the effective treatment in the Acid-HMT dual modification to enhance RS content by using a systematic review based on the PRISMA method. The studies revealed that there were 11 articles (n = 68 data) which utilized various acid types combined with HMT. The utilization of acid-alcohol, HCl, and organic acid such as citric acid, acetic acid, and lactic acid resulted in different results of RS content in modified starch. In addition to acid types, treatment conditions such as acid concentration, acidification time, acidification temperature, water content ratio, HMT time, and HMT temperature also affected the resulted RS. The treatment with 0.2 M citric acid for 24 hours at 25 ℃ combined with HMT with 30% moisture at 110 ℃ for 8 hours resulted in the highest increase in RS content of modified starch.","PeriodicalId":44793,"journal":{"name":"AIMS Agriculture and Food","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Agriculture and Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/agrfood.2023025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (DMT2) is a metabolic disease that is increasingly attracting public attention. Diabetes mellitus is expected to reach 439 million in the world in 2030. Resistant starch (RS) is an indigestible starch which has health properties which has health properties that can be used for preventing diabetes mellitus type 2. In order to increase the RS content, a dual modification method consisted of acidification and heat moisture treatment (HMT) can be applied. The Acid-HMT method is affected by various factors, i.e., acid types, acid concentration, water content ratio, HMT temperature and HMT processing time, and different treatments may result in different RS yields. This study aimed to analyze the effective treatment in the Acid-HMT dual modification to enhance RS content by using a systematic review based on the PRISMA method. The studies revealed that there were 11 articles (n = 68 data) which utilized various acid types combined with HMT. The utilization of acid-alcohol, HCl, and organic acid such as citric acid, acetic acid, and lactic acid resulted in different results of RS content in modified starch. In addition to acid types, treatment conditions such as acid concentration, acidification time, acidification temperature, water content ratio, HMT time, and HMT temperature also affected the resulted RS. The treatment with 0.2 M citric acid for 24 hours at 25 ℃ combined with HMT with 30% moisture at 110 ℃ for 8 hours resulted in the highest increase in RS content of modified starch.
酸改性与热湿联合处理对抗性淀粉含量影响的系统综述
2型糖尿病(DMT2)是一种日益引起人们关注的代谢性疾病。到2030年,全球糖尿病患者预计将达到4.39亿人。抗性淀粉(RS)是一种具有保健功效的难消化淀粉,可用于预防2型糖尿病。为了提高RS的含量,可以采用酸化和热湿处理(HMT)的双重改性方法。酸-HMT方法受酸类型、酸浓度、含水量比、HMT温度和HMT处理时间等因素的影响,不同的处理会导致不同的RS收率。本研究旨在通过基于PRISMA方法的系统综述,分析酸- hmt双改性提高RS含量的有效处理方法。研究发现,有11篇文章(n = 68个数据)使用了不同类型的酸与HMT联合使用。利用酸醇、盐酸和柠檬酸、乙酸、乳酸等有机酸对变性淀粉中RS含量的影响不同。除酸类型外,酸浓度、酸化时间、酸化温度、含水量比、HMT时间、HMT温度等处理条件也对所得RS有影响,以0.2 M柠檬酸在25℃下处理24 h,再以30%水分的HMT在110℃下处理8 h,变性淀粉RS含量增加幅度最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Agriculture and Food
AIMS Agriculture and Food AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
3.70
自引率
0.00%
发文量
34
审稿时长
8 weeks
期刊介绍: AIMS Agriculture and Food covers a broad array of topics pertaining to agriculture and food, including, but not limited to:  Agricultural and food production and utilization  Food science and technology  Agricultural and food engineering  Food chemistry and biochemistry  Food materials  Physico-chemical, structural and functional properties of agricultural and food products  Agriculture and the environment  Biorefineries in agricultural and food systems  Food security and novel alternative food sources  Traceability and regional origin of agricultural and food products  Authentication of food and agricultural products  Food safety and food microbiology  Waste reduction in agriculture and food production and processing  Animal science, aquaculture, husbandry and veterinary medicine  Resources utilization and sustainability in food and agricultural production and processing  Horticulture and plant science  Agricultural economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信