Abdul Basit M. Gaba, Mohamed A. Hassan, A. A. El-Tawab, M. Abdelmonem, Mohamed K. Morsy
{"title":"Impact of low energy electron beam on black pepper (Piper nigrum L.) microbial reduction, quality parameters, and antioxidant activity","authors":"Abdul Basit M. Gaba, Mohamed A. Hassan, A. A. El-Tawab, M. Abdelmonem, Mohamed K. Morsy","doi":"10.3934/agrfood.2022045","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Low energy electron beam (e-beam) has the ability to decontaminate or reduce bioburden and enhance the food product's safety with minimal quality loss. The current study aimed to evaluate the efficacy of e-beam on natural microbiota and quality changes in black peppercorns. The black pepper was exposed to e-beam at doses from 6–18 kGy. The microbial quality, physicochemical attributes, total phenolic compounds, and antioxidant activity were evaluated. Results demonstrated the microbial population in black pepper decreased with increasing e-beam treatment doses. Significant inactivation of Total Plate Count (TPC), yeasts, and molds were observed at dose 6 kGy by 2.3, 0.7, and 1.3 log CFU g<sup>−1</sup>, respectively, while at 18 kGy the reduction level was 6, 2.9, and 4.4 log CFU g<sup>−1</sup>, respectively. Similarly, 18 kGy of e-beam yielded a reduction of 3.3 and 3.1 log CFU g<sup>−1</sup> of <italic>Salmonella</italic> Typhimurium and coliform bacteria, respectively. A significant difference (<italic>p</italic> < 0.05) was noted between doses 12, 15, and 18 kGy on <italic>Bacillus cereus</italic> and <italic>Clostridium perfringens</italic> in black pepper. During e-beam doses, the values <italic>L</italic><sup>*</sup>, <italic>a</italic><sup>*</sup> and <italic>b</italic><sup>*</sup> of black peppercorn were not noticeably altered up to 18 kGy dose. No significant (<italic>p</italic> > 0.05) difference in moisture, volatile oil, and piperine content upon (6–18 kGy) treatments in comparison to the control. A slight difference in the bioactive compound, retaining > 90% of total phenolic compounds and antioxidant activity. Results revealed that e-beam doses ≥ 18 kGy were influential for inactivating natural microbes and foodborne pathogens without compromising the physicochemical properties and antioxidant activity of black peppercorns.</p> </abstract>","PeriodicalId":44793,"journal":{"name":"AIMS Agriculture and Food","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Agriculture and Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/agrfood.2022045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Low energy electron beam (e-beam) has the ability to decontaminate or reduce bioburden and enhance the food product's safety with minimal quality loss. The current study aimed to evaluate the efficacy of e-beam on natural microbiota and quality changes in black peppercorns. The black pepper was exposed to e-beam at doses from 6–18 kGy. The microbial quality, physicochemical attributes, total phenolic compounds, and antioxidant activity were evaluated. Results demonstrated the microbial population in black pepper decreased with increasing e-beam treatment doses. Significant inactivation of Total Plate Count (TPC), yeasts, and molds were observed at dose 6 kGy by 2.3, 0.7, and 1.3 log CFU g−1, respectively, while at 18 kGy the reduction level was 6, 2.9, and 4.4 log CFU g−1, respectively. Similarly, 18 kGy of e-beam yielded a reduction of 3.3 and 3.1 log CFU g−1 of Salmonella Typhimurium and coliform bacteria, respectively. A significant difference (p < 0.05) was noted between doses 12, 15, and 18 kGy on Bacillus cereus and Clostridium perfringens in black pepper. During e-beam doses, the values L*, a* and b* of black peppercorn were not noticeably altered up to 18 kGy dose. No significant (p > 0.05) difference in moisture, volatile oil, and piperine content upon (6–18 kGy) treatments in comparison to the control. A slight difference in the bioactive compound, retaining > 90% of total phenolic compounds and antioxidant activity. Results revealed that e-beam doses ≥ 18 kGy were influential for inactivating natural microbes and foodborne pathogens without compromising the physicochemical properties and antioxidant activity of black peppercorns.
期刊介绍:
AIMS Agriculture and Food covers a broad array of topics pertaining to agriculture and food, including, but not limited to: Agricultural and food production and utilization Food science and technology Agricultural and food engineering Food chemistry and biochemistry Food materials Physico-chemical, structural and functional properties of agricultural and food products Agriculture and the environment Biorefineries in agricultural and food systems Food security and novel alternative food sources Traceability and regional origin of agricultural and food products Authentication of food and agricultural products Food safety and food microbiology Waste reduction in agriculture and food production and processing Animal science, aquaculture, husbandry and veterinary medicine Resources utilization and sustainability in food and agricultural production and processing Horticulture and plant science Agricultural economics.