Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well

IF 1.8 3区 数学 Q1 MATHEMATICS
Shuwen He, Xiaobo Wen
{"title":"Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well","authors":"Shuwen He, Xiaobo Wen","doi":"10.3934/math.2023325","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{eqnarray*} \\left \\{\\begin{array}{ll} -\\Big(a+b\\int_{\\mathbb{R}^3}|\\nabla u|^2dx\\Big)\\Delta u+\\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\\ \\ \\mbox{in}\\ \\mathbb{R}^3,\\\\ \\\\ u\\in H^1(\\mathbb{R}^3), \\\\ \\end{array} \\right. \\label{1} \\end{eqnarray*} $\\end{document} </tex-math></disp-formula></p> <p>where $ a $ and $ b $ are positive constants, $ \\lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\\in C(\\mathbb{R}^3, \\mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \\lambda\\rightarrow \\infty $ is also explored.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2023325","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well

where $ a $ and $ b $ are positive constants, $ \lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\in C(\mathbb{R}^3, \mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \lambda\rightarrow \infty $ is also explored.

具有次线性扰动和陡势井的kirchhoff型问题解的存在性和集中性
In this paper, we consider the following nonlinear Kirchhoff-type problem with sublinear perturbation and steep potential well \begin{document}$ \begin{eqnarray*} \left \{\begin{array}{ll} -\Big(a+b\int_{\mathbb{R}^3}|\nabla u|^2dx\Big)\Delta u+\lambda V(x)u = f(x,u)+g(x)|u|^{q-2}u\ \ \mbox{in}\ \mathbb{R}^3,\\ \\ u\in H^1(\mathbb{R}^3), \\ \end{array} \right. \label{1} \end{eqnarray*} $\end{document} where $ a $ and $ b $ are positive constants, $ \lambda > 0 $ is a parameter, $ 1 < q < 2 $, the potential $ V\in C(\mathbb{R}^3, \mathbb{R}) $ and $ V^{-1}(0) $ has a nonempty interior. The functions $ f $ and $ g $ are assumed to obey a certain set of conditions. The existence of two nontrivial solutions are obtained by using variational methods. Furthermore, the concentration behavior of solutions as $ \lambda\rightarrow \infty $ is also explored.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信