Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters

IF 1.8 3区 数学 Q1 MATHEMATICS
T. Sun, G. Su, Bin Qin, Caihong Han
{"title":"Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters","authors":"T. Sun, G. Su, Bin Qin, Caihong Han","doi":"10.3934/math.20231220","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\left\\{\\begin{array}{ll}x_{n} = \\max\\Big\\{A_n , \\frac{z_{n-1}}{y_{n-2}}\\Big\\}, \\ y_{n} = \\max \\Big\\{B_n, \\frac{w_{n-1}}{x_{n-2}}\\Big\\}, \\ z_{n} = \\max\\Big\\{C_n , \\frac{x_{n-1}}{w_{n-2}}\\Big\\}, \\ w_{n} = \\max \\Big\\{D_n, \\frac{y_{n-1}}{z_{n-2}}\\Big\\}, \\ \\end{array}\\right. \\ \\ n\\in \\{0, 1, 2, \\cdots\\}, $\\end{document} </tex-math></disp-formula></p> <p>where $ A_n, B_n, C_n, D_n\\in (0, +\\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\\in (0, +\\infty)\\ (1\\leq i\\leq 2) $. We show that if $ \\min\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\} < 1 $, then this system has unbounded solutions. Also, if $ \\min\\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\\}\\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters

where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.

一类二阶四变量双周期参数极大型差分方程系统的全局行为
In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters \begin{document}$ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $\end{document} where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信