Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products

IF 1.8 3区 数学 Q1 MATHEMATICS
P. Chansangiam, Arnon Ploymukda
{"title":"Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products","authors":"P. Chansangiam, Arnon Ploymukda","doi":"10.3934/math.20231195","DOIUrl":null,"url":null,"abstract":"We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \\ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is defined to be the metric geometric mean of $ A $ and $ B $. We show that this geometric mean is the maximum solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties and analytic properties. Moreover, we establish some equations and inequalities of metric geometric means for matrices involving cancellability, positive linear map and concavity. Our results generalize the conventional metric geometric means of matrices.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231195","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the Riccati matrix equation $ X A^{-1} X = B $ in which the conventional matrix products are generalized to the semi-tensor products $ \ltimes $. When $ A $ and $ B $ are positive definite matrices satisfying the factor-dimension condition, this equation has a unique positive definite solution, which is defined to be the metric geometric mean of $ A $ and $ B $. We show that this geometric mean is the maximum solution of the Riccati inequality. We then extend the notion of the metric geometric mean to positive semidefinite matrices by a continuity argument and investigate its algebraic properties, order properties and analytic properties. Moreover, we establish some equations and inequalities of metric geometric means for matrices involving cancellability, positive linear map and concavity. Our results generalize the conventional metric geometric means of matrices.
涉及半张量积的正半定矩阵的Riccati方程和度量几何均值
研究了Riccati矩阵方程$ X A^{-1} X = B $,其中常规矩阵积推广为半张量积$ \ltimes $。当$ A $和$ B $为满足因子维条件的正定矩阵时,该方程有一个唯一的正定解,定义为$ A $和$ B $的度量几何平均值。我们证明了这个几何平均值是里卡蒂不等式的最大解。然后通过连续性论证将度量几何均值的概念推广到正半定矩阵,并研究了它的代数性质、阶性质和解析性质。此外,我们还建立了包含可消性、正线性映射和凹性的矩阵的度量几何均值的方程和不等式。我们的结果推广了矩阵的常规度量几何平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信