Discrete Leslie's model with bifurcations and control

IF 1.8 3区 数学 Q1 MATHEMATICS
A. Khan, Ibraheem M. Alsulami
{"title":"Discrete Leslie's model with bifurcations and control","authors":"A. Khan, Ibraheem M. Alsulami","doi":"10.3934/math.20231146","DOIUrl":null,"url":null,"abstract":"We explored a local stability analysis at fixed points, bifurcations, and a control in a discrete Leslie's prey-predator model in the interior of $ \\mathbb{R}_+^2 $. More specially, it is examined that for all parameters, Leslie's model has boundary and interior equilibria, and the local stability is studied by the linear stability theory at equilibrium. Additionally, the model does not undergo a flip bifurcation at the boundary fixed point, though a Neimark-Sacker bifurcation exists at the interior fixed point, and no other bifurcation exists at this point. Furthermore, the Neimark-Sacker bifurcation is controlled by a hybrid control strategy. Finally, numerical simulations that validate the obtained results are given.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231146","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We explored a local stability analysis at fixed points, bifurcations, and a control in a discrete Leslie's prey-predator model in the interior of $ \mathbb{R}_+^2 $. More specially, it is examined that for all parameters, Leslie's model has boundary and interior equilibria, and the local stability is studied by the linear stability theory at equilibrium. Additionally, the model does not undergo a flip bifurcation at the boundary fixed point, though a Neimark-Sacker bifurcation exists at the interior fixed point, and no other bifurcation exists at this point. Furthermore, the Neimark-Sacker bifurcation is controlled by a hybrid control strategy. Finally, numerical simulations that validate the obtained results are given.
离散莱斯利的分岔和控制模型
我们研究了$ \mathbb{R}_+^2 $内部的离散Leslie捕食-捕食模型在不动点、分岔和控制下的局部稳定性分析。特别地,检验了对于所有参数,Leslie模型都具有边界平衡点和内部平衡点,并用平衡点处的线性稳定性理论研究了模型的局部稳定性。此外,模型在边界不动点处不发生翻转分岔,但在内部不动点处存在neimmark - sacker分岔,并且在该点处不存在其他分岔。此外,采用混合控制策略控制neimmark - sacker分岔。最后给出了数值模拟,验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信