A fixed point theorem in strictly convex $ b $-fuzzy metric spaces

IF 1.8 3区 数学 Q1 MATHEMATICS
S. Jesic, N. Ćirović, R. Nikolić, Branislav M. Ranƌelović
{"title":"A fixed point theorem in strictly convex $ b $-fuzzy metric spaces","authors":"S. Jesic, N. Ćirović, R. Nikolić, Branislav M. Ranƌelović","doi":"10.3934/math.20231068","DOIUrl":null,"url":null,"abstract":"The main motivation for this paper is to investigate the fixed point property for non-expansive mappings defined on $ b $-fuzzy metric spaces. First, following the idea of S. Ješić's result from 2009, we introduce convex, strictly convex and normal structures for sets in $ b $-fuzzy metric spaces. By using topological methods and these notions, we prove the existence of fixed points for self-mappings defined on $ b $-fuzzy metric spaces satisfying a nonlinear type condition. This result generalizes and improves many previously known results, such as W. Takahashi's result on metric spaces from 1970. A representative example illustrating the main result is provided.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231068","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The main motivation for this paper is to investigate the fixed point property for non-expansive mappings defined on $ b $-fuzzy metric spaces. First, following the idea of S. Ješić's result from 2009, we introduce convex, strictly convex and normal structures for sets in $ b $-fuzzy metric spaces. By using topological methods and these notions, we prove the existence of fixed points for self-mappings defined on $ b $-fuzzy metric spaces satisfying a nonlinear type condition. This result generalizes and improves many previously known results, such as W. Takahashi's result on metric spaces from 1970. A representative example illustrating the main result is provided.
严格凸$ b $-模糊度量空间中的不动点定理
本文的主要动机是研究定义在$ b $-模糊度量空间上的非扩展映射的不动点性质。首先,根据s. Ješić在2009年的结果,我们引入了$ b $-模糊度量空间集合的凸结构、严格凸结构和正规结构。利用拓扑方法和这些概念,证明了在满足非线性型条件的$ b $-模糊度量空间上定义的自映射不动点的存在性。这个结果推广并改进了许多先前已知的结果,例如W. Takahashi在1970年关于度量空间的结果。给出了一个代表性的例子来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信