Local stabilization for a hyperchaotic finance system via time-delayed feedback based on discrete-time observations

IF 1.8 3区 数学 Q1 MATHEMATICS
E. Xu, Wenxing Xiao, Yonggang Chen
{"title":"Local stabilization for a hyperchaotic finance system via time-delayed feedback based on discrete-time observations","authors":"E. Xu, Wenxing Xiao, Yonggang Chen","doi":"10.3934/math.20231045","DOIUrl":null,"url":null,"abstract":"This paper considers the local stabilization problem for a hyperchaotic finance system by using a time-delayed feedback controller based on discrete-time observations. The quadratic system theory is employed to represent the nonlinear finance system and a piecewise augmented discontinuous Lyapunov-Krasovskii functional is constructed to analyze the stability of the closed-loop system. By further incorporating some advanced integral inequalities, a stabilization criterion is proposed by means of the feasibility of a set of linear matrix inequalities under which the hyperchaotic finance system can be asymptotically stabilized for any initial condition satisfying certain constraint. As the by-product, a simplified criterion is also obtained for the case without time delay. Moreover, the optimization problems with respect to the domain of attraction are specially discussed, which are transformed into the minimization problems subject to linear matrix inequalities. Finally, numerical simulations are provided to illustrate the effectiveness of the derived results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the local stabilization problem for a hyperchaotic finance system by using a time-delayed feedback controller based on discrete-time observations. The quadratic system theory is employed to represent the nonlinear finance system and a piecewise augmented discontinuous Lyapunov-Krasovskii functional is constructed to analyze the stability of the closed-loop system. By further incorporating some advanced integral inequalities, a stabilization criterion is proposed by means of the feasibility of a set of linear matrix inequalities under which the hyperchaotic finance system can be asymptotically stabilized for any initial condition satisfying certain constraint. As the by-product, a simplified criterion is also obtained for the case without time delay. Moreover, the optimization problems with respect to the domain of attraction are specially discussed, which are transformed into the minimization problems subject to linear matrix inequalities. Finally, numerical simulations are provided to illustrate the effectiveness of the derived results.
基于离散时间观测的时滞反馈超混沌金融系统的局部镇定
利用基于离散时间观测的时滞反馈控制器,研究了一类超混沌金融系统的局部镇定问题。利用二次系统理论表示非线性金融系统,构造分段增广不连续Lyapunov-Krasovskii泛函分析闭环系统的稳定性。进一步结合一些先进的积分不等式,利用一组线性矩阵不等式的可行性,给出了超混沌金融系统对于满足一定约束的任何初始条件都能渐近稳定的稳定性判据。作为副产物,得到了无时滞情况下的简化判据。此外,还特别讨论了关于吸引域的优化问题,并将其转化为线性矩阵不等式下的最小化问题。最后,通过数值仿真验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信