Robustness analysis of exponential synchronization in complex dynamic networks with random perturbations

IF 1.8 3区 数学 Q1 MATHEMATICS
Qike Zhang, Wenxiang Fang, Tao Xie
{"title":"Robustness analysis of exponential synchronization in complex dynamic networks with random perturbations","authors":"Qike Zhang, Wenxiang Fang, Tao Xie","doi":"10.3934/math.20231044","DOIUrl":null,"url":null,"abstract":"This article discusses the robustness of exponential synchronization (ESy) of complex dynamic networks (CDNs) with random perturbations. Using the Gronwall-Bellman lemma and partial inequality techniques, by solving the transcendental equation, the maximum perturbation intensity of the CDN is estimated. This implies that the disturbed system achieves ESy if the disturbance intensity is within the range of our estimation. We illustrate the theoretical results with two numerical examples.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

This article discusses the robustness of exponential synchronization (ESy) of complex dynamic networks (CDNs) with random perturbations. Using the Gronwall-Bellman lemma and partial inequality techniques, by solving the transcendental equation, the maximum perturbation intensity of the CDN is estimated. This implies that the disturbed system achieves ESy if the disturbance intensity is within the range of our estimation. We illustrate the theoretical results with two numerical examples.
随机扰动下复杂动态网络指数同步的鲁棒性分析
讨论了随机扰动下复杂动态网络指数同步的鲁棒性。利用Gronwall-Bellman引理和偏不等式技术,通过求解超越方程,估计了CDN的最大扰动强度。这意味着,如果扰动强度在我们的估计范围内,则扰动系统达到了ESy。我们用两个数值例子来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信