The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation

IF 1.8 3区 数学 Q1 MATHEMATICS
Guowei Zhang
{"title":"The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation","authors":"Guowei Zhang","doi":"10.3934/math.20231028","DOIUrl":null,"url":null,"abstract":"In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between $ T (r, f) $ and $ \\log M (r, f) $ when the modulus of variable $ |z| = r $ is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between $ T (r, f) $ and $ \log M (r, f) $ when the modulus of variable $ |z| = r $ is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.
与Petrenko偏差相关的复方程解的Julia极限方向组成的集合测度的下界
在复分析的值分布理论中,Petrenko的偏差是在变量$ |z| = r $的模足够大时,更精确地描述$ T (r, f) $与$ \log M (r, f) $之间的定量关系。本文介绍了差分方程、微分方程和微分-差分方程三种复方程系数的Petrenko偏差。在不同的假设条件下,研究了这些方程的Julia集解的极限方向的下界,其中Julia集是复杂动力系统中的一个重要概念。本文的结果表明,上述极限方向的下界与Petrenko偏差密切相关,我们的结论改进了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信