The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation
{"title":"The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation","authors":"Guowei Zhang","doi":"10.3934/math.20231028","DOIUrl":null,"url":null,"abstract":"In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between $ T (r, f) $ and $ \\log M (r, f) $ when the modulus of variable $ |z| = r $ is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between $ T (r, f) $ and $ \log M (r, f) $ when the modulus of variable $ |z| = r $ is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.
在复分析的值分布理论中,Petrenko的偏差是在变量$ |z| = r $的模足够大时,更精确地描述$ T (r, f) $与$ \log M (r, f) $之间的定量关系。本文介绍了差分方程、微分方程和微分-差分方程三种复方程系数的Petrenko偏差。在不同的假设条件下,研究了这些方程的Julia集解的极限方向的下界,其中Julia集是复杂动力系统中的一个重要概念。本文的结果表明,上述极限方向的下界与Petrenko偏差密切相关,我们的结论改进了一些已知的结果。
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.