Discovery of a Novel Series of N-Phenylindoline-5-sulfonamide Derivatives as Potent, Selective, and Orally Bioavailable Acyl CoA:Monoacylglycerol Acyltransferase-2 Inhibitors
{"title":"Discovery of a Novel Series of N-Phenylindoline-5-sulfonamide Derivatives as Potent, Selective, and Orally Bioavailable Acyl CoA:Monoacylglycerol Acyltransferase-2 Inhibitors","authors":"Kenjiro Sato*, Hiroki Takahagi, Takeshi Yoshikawa, Shinji Morimoto, Takafumi Takai, Kousuke Hidaka, Masahiro Kamaura, Osamu Kubo, Ryutaro Adachi, Tsuyoshi Ishii, Toshiyuki Maki, Taisuke Mochida, Shiro Takekawa, Masanori Nakakariya, Nobuyuki Amano, Tomoyuki Kitazaki","doi":"10.1021/acs.jmedchem.5b00178","DOIUrl":null,"url":null,"abstract":"<p >Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has attracted interest as a novel target for the treatment of obesity and metabolic diseases. Starting from <i>N</i>-phenylbenzenesulfonamide derivative <b>1</b> with moderate potency for MGAT2 inhibition, we explored an effective location of the hydrophobic group at the 1-position to enhance MGAT2 inhibitory activity. Shifting the hydrophobic group to the adjacent position followed by introduction of a bicyclic central core to restrict the substituent orientation produced <i>N</i>-phenylindoline-5-sulfonamide derivative <b>10b</b>, which displayed much improved potency, with an IC<sub>50</sub> value of 1.0 nM. This compound also exhibited excellent selectivity (greater than 30,000-fold) against related acyltransferases (MGAT3, DGAT1, DGAT2, and ACAT1). Subsequent optimization efforts were directed toward improving pharmacokinetic profiles, which resulted in the identification of 5-[(2,4-difluorophenyl)sulfamoyl]-7-(2-oxopyrrolidin-1-yl)-<i>N</i>-[4-(trifluoromethyl)phenyl]-2,3-dihydro-1<i>H</i>-indole-1-carboxamide (<b>24d</b>) endowed with potent MGAT2 inhibitory activity (IC<sub>50</sub> = 3.4 nM) and high oral bioavailability (<i>F</i> = 52%, mouse). In a mouse oral fat tolerance test, oral administration of this compound effectively suppressed the elevation of plasma triacylglycerol levels.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"58 9","pages":"3892–3909"},"PeriodicalIF":6.8000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.jmedchem.5b00178","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5b00178","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 29
Abstract
Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has attracted interest as a novel target for the treatment of obesity and metabolic diseases. Starting from N-phenylbenzenesulfonamide derivative 1 with moderate potency for MGAT2 inhibition, we explored an effective location of the hydrophobic group at the 1-position to enhance MGAT2 inhibitory activity. Shifting the hydrophobic group to the adjacent position followed by introduction of a bicyclic central core to restrict the substituent orientation produced N-phenylindoline-5-sulfonamide derivative 10b, which displayed much improved potency, with an IC50 value of 1.0 nM. This compound also exhibited excellent selectivity (greater than 30,000-fold) against related acyltransferases (MGAT3, DGAT1, DGAT2, and ACAT1). Subsequent optimization efforts were directed toward improving pharmacokinetic profiles, which resulted in the identification of 5-[(2,4-difluorophenyl)sulfamoyl]-7-(2-oxopyrrolidin-1-yl)-N-[4-(trifluoromethyl)phenyl]-2,3-dihydro-1H-indole-1-carboxamide (24d) endowed with potent MGAT2 inhibitory activity (IC50 = 3.4 nM) and high oral bioavailability (F = 52%, mouse). In a mouse oral fat tolerance test, oral administration of this compound effectively suppressed the elevation of plasma triacylglycerol levels.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.