J. Leventides, C. Poulios, Georgios Alkis Tsiatsios, M. Livada, Stavros Tsipras, Konstantinos Lefcaditis, P. Sargenti, A. Sargenti
{"title":"Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic","authors":"J. Leventides, C. Poulios, Georgios Alkis Tsiatsios, M. Livada, Stavros Tsipras, Konstantinos Lefcaditis, P. Sargenti, A. Sargenti","doi":"10.3934/JDG.2021004","DOIUrl":null,"url":null,"abstract":"We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \\begin{document}$ p $\\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \\begin{document}$ p $\\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2021004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \begin{document}$ p $\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \begin{document}$ p $\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.
We utilize systems theory in the study of the implementation of non pharmaceutical strategies for the mitigation of the COVID-19 pandemic. We present two models. The first one is a model of predictive control with receding horizon and discontinuous actions of unknown costs for the implementation of adaptive triggering policies during the disease. This model is based on a periodic assessment of the peak of the pandemic (and, thus, of the health care demand) utilizing the latest data about the transmission and recovery rate of the disease. Consequently, the model seems to be suitable for discontinuous, non-mechanical (i.e. human) actions with unknown effectiveness, like those applied in the case of COVID-19. Secondly, we consider a feedback control problem in order to contain the pandemic at the capacity of the NHS (National Health System). As input parameter we consider the value \begin{document}$ p $\end{document} that reflects the intensity-effectiveness of the measures applied and as output the predicted maximum of infected people to be treated by NHS. The feedback control regulates \begin{document}$ p $\end{document} so that the number of infected people is manageable. Based on this approach, we address the following questions: (a) the limits of improvement of this approach; (b) the effectiveness of this approach; (c) the time horizon and timing of the application.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.