{"title":"Strength in Rotary Friction Welding of Five Dissimilar Nickel-Based Superalloys","authors":"B. Taysom, C. Sorensen, T. Nelson","doi":"10.29391/2021.100.027","DOIUrl":null,"url":null,"abstract":"Advanced manufacturing processes improve the cost and quality of goods. Rotary friction welding is a fast, energy-efficient, and reliable joining process for metals, but new applications are hindered by large development costs for each new alloy. Each alloy set has different welding characteristics; therefore, lessons learned from a single alloy are not always broadly applicable. To establish knowledge that is applicable across multiple alloys, a family of different superalloys were welded to discover process trends that were applicable beyond a single alloy set. In this study, weld symmetry did not correlate to weld strength across alloy systems. Some alloys’ strongest welds occurred at maximum symmetry, whereas high asymmetry was associated with different alloys’ maximum strength. High feed rates, high welding forces, low energy, and low temperatures all resulted in high-strength welds across all alloy and geometry combinations. Tensile strengths greater than 95% of base-metal strength were recorded for most alloy systems.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.027","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
Advanced manufacturing processes improve the cost and quality of goods. Rotary friction welding is a fast, energy-efficient, and reliable joining process for metals, but new applications are hindered by large development costs for each new alloy. Each alloy set has different welding characteristics; therefore, lessons learned from a single alloy are not always broadly applicable. To establish knowledge that is applicable across multiple alloys, a family of different superalloys were welded to discover process trends that were applicable beyond a single alloy set. In this study, weld symmetry did not correlate to weld strength across alloy systems. Some alloys’ strongest welds occurred at maximum symmetry, whereas high asymmetry was associated with different alloys’ maximum strength. High feed rates, high welding forces, low energy, and low temperatures all resulted in high-strength welds across all alloy and geometry combinations. Tensile strengths greater than 95% of base-metal strength were recorded for most alloy systems.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.