E. Schulz, Matthias Wagner, H. Schubert, Wenqi Zhang, B. Balasubramanian, L. Brewer
{"title":"Short-Pulse Resistance Spot Welding of Aluminum Alloy 6016-T4 - Part 1","authors":"E. Schulz, Matthias Wagner, H. Schubert, Wenqi Zhang, B. Balasubramanian, L. Brewer","doi":"10.29391/2021.100.004","DOIUrl":null,"url":null,"abstract":"Short-pulse welding parameters for resistance spot welding (RSW) of aluminum alloy AA6016-T4 using mediumfrequency direct current (MFDC) systems were developed to reduce the heat input required for nugget formation. Optimization of current and time parameters is critical during RSW of aluminum alloys for reducing energy requirements and avoiding weld imperfections, such as solidification cracking and expulsion, while maintaining weld quality, particularly given the high electrical and thermal conductivities of the materials. The welding time and the applied current level of the current pulse were varied systematically for thin sheets (1 mm or 0.04 in.) of AA6016-T4. The quality of the welds was evaluated by pull-out testing, ultrasound testing, and metallography techniques. Simulations of the same welding processes were performed with the finite element-based SORPAS® software. The results showed short-pulse MFDC RSW can reduce the energy required for sound welds in this alloy without requiring an increase in welding current. The simulations and experiments also showed the welding process had distinct weld nugget nucleation and growth phases.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":"100 1","pages":"41-51"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.004","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 7
Abstract
Short-pulse welding parameters for resistance spot welding (RSW) of aluminum alloy AA6016-T4 using mediumfrequency direct current (MFDC) systems were developed to reduce the heat input required for nugget formation. Optimization of current and time parameters is critical during RSW of aluminum alloys for reducing energy requirements and avoiding weld imperfections, such as solidification cracking and expulsion, while maintaining weld quality, particularly given the high electrical and thermal conductivities of the materials. The welding time and the applied current level of the current pulse were varied systematically for thin sheets (1 mm or 0.04 in.) of AA6016-T4. The quality of the welds was evaluated by pull-out testing, ultrasound testing, and metallography techniques. Simulations of the same welding processes were performed with the finite element-based SORPAS® software. The results showed short-pulse MFDC RSW can reduce the energy required for sound welds in this alloy without requiring an increase in welding current. The simulations and experiments also showed the welding process had distinct weld nugget nucleation and growth phases.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.