Anderson Páez Chanagá, Ana Beatriz Ramirez Silva, Ivan Javier Sánchez Galvis
{"title":"Estrategias computacionales para la implementación de modelado elástico 2D sobre GPU","authors":"Anderson Páez Chanagá, Ana Beatriz Ramirez Silva, Ivan Javier Sánchez Galvis","doi":"10.31908/19098367.2016","DOIUrl":null,"url":null,"abstract":"El modelado de onda elástico presenta un reto de implementación debido a que es un procedimiento computacionalmente costoso. En la actualidad, debido al incremento en la potencia en GPU junto con el desarrollo de la computación HPC, es posible ejecutar modelado elástico con mejores tiempos de ejecución y uso de memoria. Este estudio evalúa el desempeño de 2 estrategias para implementar modelado elástico usando diferentes diseños para ejecución de kernel, estrategias de asignación de memoria para el cálculo de CPML y administración del almacenamiento del campo de onda. Las mediciones de desempeño muestran que el algoritmo que incluye diseño de ejecución de kernel 2D, la estrategia de memoria reducida CPML y el almacenamiento en memoria global de GPU del campo de onda alcanza un máximo de 88.4% mejor tiempo de ejecución y utiliza un 13.3 veces menos memoria para obtener los mismos resultados de modelado elástico. Existe también una creciente tendencia de mejora de tiempo de ejecución y ahorro de memoria cuando se trabaja con modelos de tamaños más grandes con esta estrategia.","PeriodicalId":41325,"journal":{"name":"ENTRE CIENCIA E INGENIERIA","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENTRE CIENCIA E INGENIERIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31908/19098367.2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
El modelado de onda elástico presenta un reto de implementación debido a que es un procedimiento computacionalmente costoso. En la actualidad, debido al incremento en la potencia en GPU junto con el desarrollo de la computación HPC, es posible ejecutar modelado elástico con mejores tiempos de ejecución y uso de memoria. Este estudio evalúa el desempeño de 2 estrategias para implementar modelado elástico usando diferentes diseños para ejecución de kernel, estrategias de asignación de memoria para el cálculo de CPML y administración del almacenamiento del campo de onda. Las mediciones de desempeño muestran que el algoritmo que incluye diseño de ejecución de kernel 2D, la estrategia de memoria reducida CPML y el almacenamiento en memoria global de GPU del campo de onda alcanza un máximo de 88.4% mejor tiempo de ejecución y utiliza un 13.3 veces menos memoria para obtener los mismos resultados de modelado elástico. Existe también una creciente tendencia de mejora de tiempo de ejecución y ahorro de memoria cuando se trabaja con modelos de tamaños más grandes con esta estrategia.