AN INVERSE PROBLEM FOR A NONLINEAR WAVE EQUATION WITH DAMPING

IF 0.6 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
V. Romanov
{"title":"AN INVERSE PROBLEM FOR A NONLINEAR WAVE EQUATION WITH DAMPING","authors":"V. Romanov","doi":"10.32523/2306-6172-2023-11-2-99-115","DOIUrl":null,"url":null,"abstract":"We consider an inverse problem of recovering two coefficients in a semi-linear wave equation. This equation contains a damping term and a term with a quadratic nonlinearity. The inverse problem consists in recovering coefficients under these terms as function of the space variable x ∈ R 3 . A forward problem for the equation with a point source is studied. As a result, the inverse problem reduce to two problems, one of them is the well known problem of X-ray tomography, the other one is the problem of the integral geometry with a with a special weight function. The latter problem is studied and a stability estimate for the solution of this problem is stated.","PeriodicalId":42910,"journal":{"name":"Eurasian Journal of Mathematical and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Mathematical and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-2-99-115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an inverse problem of recovering two coefficients in a semi-linear wave equation. This equation contains a damping term and a term with a quadratic nonlinearity. The inverse problem consists in recovering coefficients under these terms as function of the space variable x ∈ R 3 . A forward problem for the equation with a point source is studied. As a result, the inverse problem reduce to two problems, one of them is the well known problem of X-ray tomography, the other one is the problem of the integral geometry with a with a special weight function. The latter problem is studied and a stability estimate for the solution of this problem is stated.
带阻尼的非线性波动方程的反问题
考虑半线性波动方程中两个系数的反演问题。该方程包含一个阻尼项和一个二次非线性项。逆问题包括在这些项下恢复系数作为空间变量x∈r3的函数。研究了带点源方程的正演问题。将反问题简化为两个问题,一个是众所周知的x射线层析成像问题,另一个是带有特殊权函数的几何积分问题。对后一个问题进行了研究,并给出了该问题解的稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurasian Journal of Mathematical and Computer Applications
Eurasian Journal of Mathematical and Computer Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.40
自引率
0.00%
发文量
18
期刊介绍: Eurasian Journal of Mathematical and Computer Applications (EJMCA) publishes carefully selected original research papers in all areas of Applied mathematics first of all from Europe and Asia. However papers by mathematicians from other continents are also welcome. From time to time Eurasian Journal of Mathematical and Computer Applications (EJMCA) will also publish survey papers. Eurasian Mathematical Journal publishes 4 issues in a year. A working language of the journal is English. Main topics are: - Mathematical methods and modeling in mechanics, mining, biology, geophysics, electrodynamics, acoustics, industry. - Inverse problems of mathematical physics: theory and computational approaches. - Medical and industry tomography. - Computer applications: distributed information systems, decision-making systems, embedded systems, information security, graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信