{"title":"Power of Latent Growth Modeling for Detecting Linear Growth: Number of Measurements and Comparison With Other Analytic Approaches","authors":"Fan Xitao, Xiaotao Fan","doi":"10.3200/JEXE.73.2.121-139","DOIUrl":null,"url":null,"abstract":"The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was used, with 3 crossed factors (growth magnitude, number of repeated measurements, and sample size) and 1,000 replications within each cell condition. The major findings were as follows: For 3 repeated measurements, a substantial proportion of samples failed to converge in structural equation modeling; the number of repeated measurements did not show any effect on the statistical power of LGM in detecting linear growth; and the LGM approach outperformed both the dependent t test and repeated-measures analysis of variance (ANOVA) in terms of statistical power for detecting growth under the conditions of small growth magnitude and small to moderate sample size conditions. The multivariate repeated-measures ANOVA approach consistently underperformed the other tests.","PeriodicalId":47911,"journal":{"name":"Journal of Experimental Education","volume":"73 1","pages":"121 - 139"},"PeriodicalIF":2.2000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3200/JEXE.73.2.121-139","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.3200/JEXE.73.2.121-139","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 43
Abstract
The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was used, with 3 crossed factors (growth magnitude, number of repeated measurements, and sample size) and 1,000 replications within each cell condition. The major findings were as follows: For 3 repeated measurements, a substantial proportion of samples failed to converge in structural equation modeling; the number of repeated measurements did not show any effect on the statistical power of LGM in detecting linear growth; and the LGM approach outperformed both the dependent t test and repeated-measures analysis of variance (ANOVA) in terms of statistical power for detecting growth under the conditions of small growth magnitude and small to moderate sample size conditions. The multivariate repeated-measures ANOVA approach consistently underperformed the other tests.
期刊介绍:
The Journal of Experimental Education publishes theoretical, laboratory, and classroom research studies that use the range of quantitative and qualitative methodologies. Recent articles have explored the correlation between test preparation and performance, enhancing students" self-efficacy, the effects of peer collaboration among students, and arguments about statistical significance and effect size reporting. In recent issues, JXE has published examinations of statistical methodologies and editorial practices used in several educational research journals.