{"title":"Multi-Level Conditional Transit Signal Priority in Connected Vehicle Environments","authors":"Z. Cvijović, M. Zlatkovic, A. Stevanovic, Yu Song","doi":"10.31075/PIS.67.02.01","DOIUrl":null,"url":null,"abstract":"Connected Vehicles (CV) are an emerging technology with a large potential to improve traffic operations and safety. This paper develops and tests advanced CV-based multi-level conditional Transit Signal Priority (TSP). The algorithms are using the latitude/longitude (lat/lon) coordinates of CV vehicles and intersections to establish communication, share information and request priority. The TSP strategies are implemented through controllers’ built-in features and logic processor, using Econolite ASC/3 as a representative traffic signal controller. The tests were performed in VISSIM microsimulation with the ASC/3 Software-in-the-Loop (SIL) controller emulator. State Street in Salt Lake City, UT, is selected as a test-case corridor. The paper shows that the developed signal control priority (SCP) algorithms are successful in reducing delays for target vehicles in excess of 6%, without significant impacts on other traffic. The information obtained from CV vehicles can be used to further enhance control algorithms and create adaptive SCP programs.","PeriodicalId":32747,"journal":{"name":"Put i Saobracaj","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Put i Saobracaj","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31075/PIS.67.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Connected Vehicles (CV) are an emerging technology with a large potential to improve traffic operations and safety. This paper develops and tests advanced CV-based multi-level conditional Transit Signal Priority (TSP). The algorithms are using the latitude/longitude (lat/lon) coordinates of CV vehicles and intersections to establish communication, share information and request priority. The TSP strategies are implemented through controllers’ built-in features and logic processor, using Econolite ASC/3 as a representative traffic signal controller. The tests were performed in VISSIM microsimulation with the ASC/3 Software-in-the-Loop (SIL) controller emulator. State Street in Salt Lake City, UT, is selected as a test-case corridor. The paper shows that the developed signal control priority (SCP) algorithms are successful in reducing delays for target vehicles in excess of 6%, without significant impacts on other traffic. The information obtained from CV vehicles can be used to further enhance control algorithms and create adaptive SCP programs.