Ayesha Faryal, F. Umer, M. Amjad, Zeeshan Rashid, Aoun Muhammad
{"title":"Modelling and Simulation of SCADA and PLC System for Power System Protection Laboratory","authors":"Ayesha Faryal, F. Umer, M. Amjad, Zeeshan Rashid, Aoun Muhammad","doi":"10.2478/ecce-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract The protection of power system is an essential trait in a huge network to efficiently detect and isolate the sections undergoing faults or abnormal behaviour. The key components of a protection scheme include circuit breakers, relays, switchgears and fuses which employ communication from one station to another to achieve high-speed tripping. The automation of these components at the laboratory level using programmable logic controller (PLC) along with supervisory control and data acquisition (SCADA) system owns paramount importance for intelligent decision making, sensing, actuating, monitoring and maintaining the record in the host server. This paper discusses such a technique for conventional power system protection laboratory at a new level of development to promote a control system through PLC and SCADA. The control system has indication of over and under values of voltage, load and frequency, which can trigger malfunctioning of equipment and must be rectified. Furthermore, ground fault and inverse current indication are added to the system for monitoring and controlling purposes. The proposed system enhances the efficiency and safety of the expensive equipment and the personnel to the next level and also introduces new standards of automated protection schemes for modern technical institutes.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"17 1","pages":"19 - 25"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The protection of power system is an essential trait in a huge network to efficiently detect and isolate the sections undergoing faults or abnormal behaviour. The key components of a protection scheme include circuit breakers, relays, switchgears and fuses which employ communication from one station to another to achieve high-speed tripping. The automation of these components at the laboratory level using programmable logic controller (PLC) along with supervisory control and data acquisition (SCADA) system owns paramount importance for intelligent decision making, sensing, actuating, monitoring and maintaining the record in the host server. This paper discusses such a technique for conventional power system protection laboratory at a new level of development to promote a control system through PLC and SCADA. The control system has indication of over and under values of voltage, load and frequency, which can trigger malfunctioning of equipment and must be rectified. Furthermore, ground fault and inverse current indication are added to the system for monitoring and controlling purposes. The proposed system enhances the efficiency and safety of the expensive equipment and the personnel to the next level and also introduces new standards of automated protection schemes for modern technical institutes.