{"title":"Adaptive quadrilateral distance relaying scheme for fault impedance compensation","authors":"U. Patel, N. Chothani, P. Bhatt","doi":"10.2478/ecce-2018-0007","DOIUrl":null,"url":null,"abstract":"Abstract Impedance reach of numerical distance relay is severely affected by Fault Resistance (RF), Fault Inception Angle (FIA), Fault Type (FT), Fault Location (FL), Power Flow Angle (PFA) and series compensation in transmission line. This paper presents a novel standalone adaptive distance protection algorithm for detection, classification and location of fault in presence of variable fault resistance. It is based on adaptive slope tracking method to detect and classify the fault in combination with modified Fourier filter algorithm for locating the fault. To realize the effectiveness of the proposed technique, simulations are performed in PSCAD using multiple run facility & validation is carried out in MATLAB® considering wide variation in power system disturbances. Due to adaptive setting of quadrilateral characteristics in accordance with variation in fault impedance, the proposed technique is 100 % accurate for detection & classification of faults with error in fault location estimation to be within 1 %. Moreover, the proposed technique provides significant improvement in response time and estimation of fault location as compared to existing distance relaying algorithms, which are the key attributes of multi-functional numerical relay","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"14 1","pages":"58 - 70"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2018-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract Impedance reach of numerical distance relay is severely affected by Fault Resistance (RF), Fault Inception Angle (FIA), Fault Type (FT), Fault Location (FL), Power Flow Angle (PFA) and series compensation in transmission line. This paper presents a novel standalone adaptive distance protection algorithm for detection, classification and location of fault in presence of variable fault resistance. It is based on adaptive slope tracking method to detect and classify the fault in combination with modified Fourier filter algorithm for locating the fault. To realize the effectiveness of the proposed technique, simulations are performed in PSCAD using multiple run facility & validation is carried out in MATLAB® considering wide variation in power system disturbances. Due to adaptive setting of quadrilateral characteristics in accordance with variation in fault impedance, the proposed technique is 100 % accurate for detection & classification of faults with error in fault location estimation to be within 1 %. Moreover, the proposed technique provides significant improvement in response time and estimation of fault location as compared to existing distance relaying algorithms, which are the key attributes of multi-functional numerical relay