Himanshi Mangla, Hitesh Sharma, S. Dave, Jebi Sudan, H. Pathak
{"title":"Microbial mechanism of petroleum hydrocarbons degradation: “An Environmental perspective”","authors":"Himanshi Mangla, Hitesh Sharma, S. Dave, Jebi Sudan, H. Pathak","doi":"10.26789/aeb.2021.02.005","DOIUrl":null,"url":null,"abstract":"Petroleum hydrocarbon compounds are recognized to be neurotoxic and xenobiotic organic pollutants, because they are presently a large environmental issue as a result of the increased mining of petroleum compounds and similar products, both of which have important environmental consequences. Petroleum products include cancer - causing compounds which can have a range of impacts on ecology biotic and abiotic variables, and leakage is generally induced by mistakes in pumping, transportation, and refining. Physical and biological procedures are commonly cleaned to separate petroleum from polluted areas. Both methods are efficient but can be costly. Because it is not very costly and leads to complete mineralization, bioremediation is the best and most advanced method for treating these polluted sites. Another very significant and successful natural technique for eliminating petroleum hydrocarbon environmental contaminants is microbial decomposition. Hydrocarbon contaminants could be deteriorated by a variety of indigenous microbes in water and soil. A variety of limiting variables have been identified that impact petroleum hydrocarbon biodegradation. This study outlines the aerobic and anaerobic microbiological breakdown of organic compounds, as well as the different variables that influence the process. Microbial deterioration could be regarded a vital aspect in the cleaning approach for petroleum hydrocarbon recovery, it can be inferred.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26789/aeb.2021.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Petroleum hydrocarbon compounds are recognized to be neurotoxic and xenobiotic organic pollutants, because they are presently a large environmental issue as a result of the increased mining of petroleum compounds and similar products, both of which have important environmental consequences. Petroleum products include cancer - causing compounds which can have a range of impacts on ecology biotic and abiotic variables, and leakage is generally induced by mistakes in pumping, transportation, and refining. Physical and biological procedures are commonly cleaned to separate petroleum from polluted areas. Both methods are efficient but can be costly. Because it is not very costly and leads to complete mineralization, bioremediation is the best and most advanced method for treating these polluted sites. Another very significant and successful natural technique for eliminating petroleum hydrocarbon environmental contaminants is microbial decomposition. Hydrocarbon contaminants could be deteriorated by a variety of indigenous microbes in water and soil. A variety of limiting variables have been identified that impact petroleum hydrocarbon biodegradation. This study outlines the aerobic and anaerobic microbiological breakdown of organic compounds, as well as the different variables that influence the process. Microbial deterioration could be regarded a vital aspect in the cleaning approach for petroleum hydrocarbon recovery, it can be inferred.