Využití automatické identifikace a sběru dat prostřednictvím radiofrekvenčních technologií v prostředí průmyslu 4.0

Martin Polívka, Lilia Dvořáková
{"title":"Využití automatické identifikace a sběru dat prostřednictvím radiofrekvenčních technologií v prostředí průmyslu 4.0","authors":"Martin Polívka, Lilia Dvořáková","doi":"10.24132/jtb.2019.9.2.53_61","DOIUrl":null,"url":null,"abstract":"This article presents results of research dealing with the usage of automatic identification and data capture based on the radio frequency identification technology in the environment of Industry 4.0. This topic is actual both for academic theory and for practical business, as in the current business environment there is the undeniable and rising need of fast, accurate and cost-effective acquirement of data for the purposes of process management and controlling. Technologies of automatic identification and data capture can be successfully used to fulfil such need, assuming the right technology is chosen. Results of conducted research show, that the radio frequency identification technology can be successfully used in particular components of Industry 4.0, such as big data, system integration and internet of things. The results also show, that only the ultra-high and high frequency variants of radio frequency identification technologies are suitable for the applications connected to the Industry 4.0 concept. The low frequency variant of this technology is too limited by its technical restriction, especially the low velocity and possible distance of reading, to be of any use for such applications.","PeriodicalId":30792,"journal":{"name":"Trendy v podnikani","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trendy v podnikani","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/jtb.2019.9.2.53_61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents results of research dealing with the usage of automatic identification and data capture based on the radio frequency identification technology in the environment of Industry 4.0. This topic is actual both for academic theory and for practical business, as in the current business environment there is the undeniable and rising need of fast, accurate and cost-effective acquirement of data for the purposes of process management and controlling. Technologies of automatic identification and data capture can be successfully used to fulfil such need, assuming the right technology is chosen. Results of conducted research show, that the radio frequency identification technology can be successfully used in particular components of Industry 4.0, such as big data, system integration and internet of things. The results also show, that only the ultra-high and high frequency variants of radio frequency identification technologies are suitable for the applications connected to the Industry 4.0 concept. The low frequency variant of this technology is too limited by its technical restriction, especially the low velocity and possible distance of reading, to be of any use for such applications.
通过射频技术在4.0工业环境中使用自动识别和数据收集
本文介绍了在工业4.0环境下基于射频识别技术的自动识别和数据采集的研究结果。本课题对于学术理论和实际业务来说都是具有现实意义的,因为在当前的商业环境中,为了流程管理和控制的目的,对快速、准确和具有成本效益的数据获取的需求是不可否认的和不断增长的。如果选择了正确的技术,自动识别和数据捕获技术可以成功地用于满足这种需求。研究结果表明,射频识别技术可以成功地应用于工业4.0的特定组件,如大数据、系统集成和物联网。结果还表明,只有射频识别技术的超高和高频变体适合与工业4.0概念相关的应用。这种技术的低频变体受到其技术限制的限制,特别是低速度和可能的读取距离,对此类应用没有任何用处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信