Lessons Learned─Lithium Silicide Hydration Fire

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Brynal A. Benally, Benjamin W. Juba, David Schafer, Adam S. Pimentel, Jessica K. Román-Kustas*
{"title":"Lessons Learned─Lithium Silicide Hydration Fire","authors":"Brynal A. Benally,&nbsp;Benjamin W. Juba,&nbsp;David Schafer,&nbsp;Adam S. Pimentel,&nbsp;Jessica K. Román-Kustas*","doi":"10.1021/acs.chas.1c00040","DOIUrl":null,"url":null,"abstract":"<p >Alkali metals, such as lithium, sodium, potassium, etc., are highly reactive elements. While researchers generally handle these metals with caution, less caution is taken when these elements have been “reacted”. Here, a recent incident is examined in which a pair of researchers ignited a lithium silicide alloy sample that was assumed to be fully hydrated to lithium hydroxide and, thereby, no longer water-reactive. However, variations in the original chemical composition of the lithium compounds examined resulted in select mixtures failing to hydrate and react completely to lithium hydroxide in the time frame allowed. This gave rise to residual unreacted, water-sensitive lithium silicide which resulted in a violent exothermic reaction with water and autoignition of the produced hydrogen gas. This Article describes this incident and improvements that can be implemented to prevent similar incidents from occurring.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.chas.1c00040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.1c00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Alkali metals, such as lithium, sodium, potassium, etc., are highly reactive elements. While researchers generally handle these metals with caution, less caution is taken when these elements have been “reacted”. Here, a recent incident is examined in which a pair of researchers ignited a lithium silicide alloy sample that was assumed to be fully hydrated to lithium hydroxide and, thereby, no longer water-reactive. However, variations in the original chemical composition of the lithium compounds examined resulted in select mixtures failing to hydrate and react completely to lithium hydroxide in the time frame allowed. This gave rise to residual unreacted, water-sensitive lithium silicide which resulted in a violent exothermic reaction with water and autoignition of the produced hydrogen gas. This Article describes this incident and improvements that can be implemented to prevent similar incidents from occurring.

Abstract Image

经验教训──硅化锂水化火灾
碱金属,如锂、钠、钾等,是高活性元素。虽然研究人员通常谨慎处理这些金属,但当这些元素发生“反应”时,就不那么谨慎了。在这里,一对研究人员点燃了一个硅化锂合金样品,该样品被认为与氢氧化锂完全水合,因此不再具有水反应性。然而,所研究的锂化合物的原始化学成分的变化导致某些混合物未能在允许的时间框架内水化并与氢氧化锂完全反应。这就产生了残留的未反应的,水敏感的硅化锂,导致与水剧烈放热反应和产生的氢气自燃。本文描述了此事件以及可以实现的改进,以防止发生类似事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信