Wireless data transmission in underwater hydroacoustic environment based on MIMO-OFDM system and application adaptive algorithm at the receiver side

Q3 Engineering
V. Fedosov, A. Legin
{"title":"Wireless data transmission in underwater hydroacoustic environment based on MIMO-OFDM system and application adaptive algorithm at the receiver side","authors":"V. Fedosov, A. Legin","doi":"10.2298/sjee1901071f","DOIUrl":null,"url":null,"abstract":"To increase the transmission speed in wireless data transmission systems, it is necessary to change either the bandwidth or the spectral efficiency, or both simultaneously. Systems based on Multi-Input Multi-Output (MIMO) methods can significantly increase spectral efficiency through parallel transmission using several transmitters and receivers. Such systems are particularly attractive for use in underwater acoustic communications systems, which are normally bandwidth-reduced. MIMO system along with OFDM (Orthogonal Frequency-Division Multiplexing) is a popular technology used in wireless networks to provide a high data transfer rate and resistance to multipath and fading of the channel. The implementation of such a system requires being aware of the channel condition at the receiver, and can be provided by means of using channel parameter estimation schemes. The adaptation task on the receiving side, apart from peak of pattern formation in the direction of the signal expected, also includes the interference-source suppression, that is, the issue of implementing spatial filtering of interference from other directions. However, since the signal and noise direction of arrival are unknown, we get a system with adaptive antenna array (AA). In the proposed research, a phase antenna array was used with controlled weighing.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/sjee1901071f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

To increase the transmission speed in wireless data transmission systems, it is necessary to change either the bandwidth or the spectral efficiency, or both simultaneously. Systems based on Multi-Input Multi-Output (MIMO) methods can significantly increase spectral efficiency through parallel transmission using several transmitters and receivers. Such systems are particularly attractive for use in underwater acoustic communications systems, which are normally bandwidth-reduced. MIMO system along with OFDM (Orthogonal Frequency-Division Multiplexing) is a popular technology used in wireless networks to provide a high data transfer rate and resistance to multipath and fading of the channel. The implementation of such a system requires being aware of the channel condition at the receiver, and can be provided by means of using channel parameter estimation schemes. The adaptation task on the receiving side, apart from peak of pattern formation in the direction of the signal expected, also includes the interference-source suppression, that is, the issue of implementing spatial filtering of interference from other directions. However, since the signal and noise direction of arrival are unknown, we get a system with adaptive antenna array (AA). In the proposed research, a phase antenna array was used with controlled weighing.
基于MIMO-OFDM系统和接收端应用自适应算法的水下水声环境无线数据传输
为了提高无线数据传输系统的传输速度,要么改变带宽,要么改变频谱效率,要么同时改变两者。基于多输入多输出(MIMO)方法的系统可以通过使用多个发射器和接收器并行传输来显着提高频谱效率。这种系统对通常带宽减少的水声通信系统的使用特别有吸引力。MIMO系统和正交频分复用(OFDM)是无线网络中常用的一种技术,可以提供高数据传输速率和抗多径和信道衰落。这样一个系统的实现需要知道接收器的信道条件,并且可以通过使用信道参数估计方案来提供。接收端的自适应任务,除了期望信号方向的方向图形成峰值外,还包括干扰源抑制,即对其他方向的干扰进行空间滤波的问题。然而,由于信号和噪声的到达方向是未知的,我们得到了一个自适应天线阵列(AA)系统。在本研究中,采用了一种控制称重的相控阵天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Serbian Journal of Electrical Engineering
Serbian Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
25 weeks
期刊介绍: The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信