Influence of YTS addition on structural and electrical properties of PZT-based ceramics

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
Yasmina Djoudi, F. Kahoul, L. Hamzioui, A. Guemache
{"title":"Influence of YTS addition on structural and electrical properties of PZT-based ceramics","authors":"Yasmina Djoudi, F. Kahoul, L. Hamzioui, A. Guemache","doi":"10.2298/pac2103279d","DOIUrl":null,"url":null,"abstract":"Perovskite solid solution (1-x)Pb(Zr0.52Ti0.48)O3-xY(Ta1/2Sb1/2)O3 ceramics (abbreviated as PZT-YTS, where x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by conventional solid state method. The phase structure, microstructure and corresponding electrical properties were studied. X-ray diffraction and Raman analyses show that tetragonal phase structure was obtained in all ceramics at room temperature. Scanning electron micrographs of the samples show uniform grain distribution and grain growth inhibition with the increase of doping content. The dielectric permittivity, dissipation factor, electromechanical coupling factor, Young modulus, mechanical quality factor, piezoelectric charge constant, actual density and piezoelectric voltage constant, for the ceramics with x = 0.04 were: ?r = 714.9, tan ? = 0.03345, KP = 0.635, Y = 10.528 ? 1010 N/m2, Qm = 622.254, d31 = 74.738 ? 10?12 C/N, ?a = 7.67 g/cm3 and g31 = 10.477 ? 10?3 m?V/N, respectively, which are optimal in comparison to other studied samples.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2103279d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Perovskite solid solution (1-x)Pb(Zr0.52Ti0.48)O3-xY(Ta1/2Sb1/2)O3 ceramics (abbreviated as PZT-YTS, where x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by conventional solid state method. The phase structure, microstructure and corresponding electrical properties were studied. X-ray diffraction and Raman analyses show that tetragonal phase structure was obtained in all ceramics at room temperature. Scanning electron micrographs of the samples show uniform grain distribution and grain growth inhibition with the increase of doping content. The dielectric permittivity, dissipation factor, electromechanical coupling factor, Young modulus, mechanical quality factor, piezoelectric charge constant, actual density and piezoelectric voltage constant, for the ceramics with x = 0.04 were: ?r = 714.9, tan ? = 0.03345, KP = 0.635, Y = 10.528 ? 1010 N/m2, Qm = 622.254, d31 = 74.738 ? 10?12 C/N, ?a = 7.67 g/cm3 and g31 = 10.477 ? 10?3 m?V/N, respectively, which are optimal in comparison to other studied samples.
YTS的加入对pz基陶瓷结构和电性能的影响
采用常规固相法合成了钙钛矿固溶体(1-x)Pb(Zr0.52Ti0.48)O3- xy (Ta1/2Sb1/2)O3陶瓷(简称PZT-YTS,其中x = 0、0.01、0.02、0.03、0.04和0.05)。研究了其相结构、显微组织及相应的电性能。x射线衍射和拉曼分析表明,所有陶瓷在室温下均获得四方相结构。扫描电镜显示,随着掺杂量的增加,晶粒分布均匀,晶粒生长受到抑制。当x = 0.04时,陶瓷的介电常数、耗散因子、机电耦合因子、杨氏模量、力学品质因子、压电电荷常数、实际密度和压电电压常数分别为:?r = 714.9, tan ?= 0.03345, KP = 0.635, y = 10.528 ?1010 N/m2, Qm = 622.254, d31 = 74.738 ?10?12 C/N, ?a = 7.67 g/cm3, g31 = 10.477 ?10?3 m公司吗?分别为V/N,与其他研究样本相比,这是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信