G-symmetric monoidal categories of modules over equivariant commutative ring spectra

IF 0.8 Q2 MATHEMATICS
A. Blumberg, M. Hill
{"title":"G-symmetric monoidal categories of modules\nover equivariant commutative ring spectra","authors":"A. Blumberg, M. Hill","doi":"10.2140/tunis.2020.2.237","DOIUrl":null,"url":null,"abstract":"We describe the multiplicative structures that arise on categories of equivariant modules over certain equivariant commutative ring spectra. Building on our previous work on N-infinity ring spectra, we construct categories of equivariant operadic modules over N-infinity rings that are structured by equivariant linear isometries operads. These categories of modules are endowed with equivariant symmetric monoidal structures, which amounts to the structure of an \"incomplete Mackey functor in homotopical categories\". In particular, we construct internal norms which satisfy the double coset formula. We regard the work of this paper as a first step towards equivariant derived algebraic geometry.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.237","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

We describe the multiplicative structures that arise on categories of equivariant modules over certain equivariant commutative ring spectra. Building on our previous work on N-infinity ring spectra, we construct categories of equivariant operadic modules over N-infinity rings that are structured by equivariant linear isometries operads. These categories of modules are endowed with equivariant symmetric monoidal structures, which amounts to the structure of an "incomplete Mackey functor in homotopical categories". In particular, we construct internal norms which satisfy the double coset formula. We regard the work of this paper as a first step towards equivariant derived algebraic geometry.
等变可交换环谱上模的g对称单一性范畴
我们描述了在某些等变交换环谱上的等变模范畴上出现的乘法结构。基于我们之前对n -无穷环光谱的研究,我们构建了n -无穷环上由等变线性等距操作数构成的等变操作模的类别。这些模的范畴被赋予了等变对称一元结构,相当于“同局部范畴中的不完全Mackey函子”的结构。特别地,我们构造了满足双陪集公式的内模。我们认为本文的工作是迈向等变代数几何的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信