Twisted Calabi–Yau ring spectra, string topology, and gauge symmetry

IF 0.8 Q2 MATHEMATICS
R. Cohen, Inbar Klang
{"title":"Twisted Calabi–Yau ring spectra, string\ntopology, and gauge symmetry","authors":"R. Cohen, Inbar Klang","doi":"10.2140/tunis.2020.2.147","DOIUrl":null,"url":null,"abstract":"In this paper, we import the theory of \"Calabi-Yau\" algebras and categories from symplectic topology and topological field theories to the setting of spectra in stable homotopy theory. Twistings in this theory will be particularly important. There will be two types of Calabi-Yau structures in the setting of ring spectra: one that applies to compact algebras and one that applies to smooth algebras. The main application of twisted compact Calabi-Yau ring spectra that we will study is to describe, prove, and explain a certain duality phenomenon in string topology. This is a duality between the manifold string topology of Chas-Sullivan and the Lie group string topology of Chataur-Menichi. This will extend and generalize work of Gruher. Then, generalizing work of the first author and Jones, we show how the gauge group of the principal bundle acts on this compact Calabi-Yau structure, and compute some explicit examples. We then extend the notion of the Calabi-Yau structure to smooth ring spectra, and prove that Thom ring spectra of (virtual) bundles over the loop space, $\\Omega M$, have this structure. In the case when $M$ is a sphere we will use these twisted smooth Calabi-Yau ring spectra to study Lagrangian immersions of the sphere into its cotangent bundle. We recast the work of Abouzaid-Kragh to show that the topological Hochschild homology of the Thom ring spectrum induced by the $h$-principle classifying map of the Lagrangian immersion, detects whether that immersion can be Lagrangian isotopic to an embedding. We then compute some examples. Finally, we interpret these Calabi-Yau structures directly in terms of topological Hochschild homology and cohomology.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we import the theory of "Calabi-Yau" algebras and categories from symplectic topology and topological field theories to the setting of spectra in stable homotopy theory. Twistings in this theory will be particularly important. There will be two types of Calabi-Yau structures in the setting of ring spectra: one that applies to compact algebras and one that applies to smooth algebras. The main application of twisted compact Calabi-Yau ring spectra that we will study is to describe, prove, and explain a certain duality phenomenon in string topology. This is a duality between the manifold string topology of Chas-Sullivan and the Lie group string topology of Chataur-Menichi. This will extend and generalize work of Gruher. Then, generalizing work of the first author and Jones, we show how the gauge group of the principal bundle acts on this compact Calabi-Yau structure, and compute some explicit examples. We then extend the notion of the Calabi-Yau structure to smooth ring spectra, and prove that Thom ring spectra of (virtual) bundles over the loop space, $\Omega M$, have this structure. In the case when $M$ is a sphere we will use these twisted smooth Calabi-Yau ring spectra to study Lagrangian immersions of the sphere into its cotangent bundle. We recast the work of Abouzaid-Kragh to show that the topological Hochschild homology of the Thom ring spectrum induced by the $h$-principle classifying map of the Lagrangian immersion, detects whether that immersion can be Lagrangian isotopic to an embedding. We then compute some examples. Finally, we interpret these Calabi-Yau structures directly in terms of topological Hochschild homology and cohomology.
扭曲的Calabi-Yau环谱,弦拓扑和规范对称
本文将“Calabi-Yau”代数和范畴理论从辛拓扑和拓扑场理论引入到稳定同伦理论中谱的设置中。这个理论中的扭曲将是特别重要的。在环谱的设置中有两种类型的Calabi-Yau结构:一种适用于紧代数,另一种适用于光滑代数。我们研究的扭曲紧化Calabi-Yau环谱的主要应用是描述、证明和解释弦拓扑中的某种对偶现象。这是chaas - sullivan的流形弦拓扑和Chataur-Menichi的李群弦拓扑之间的对偶性。这将扩展和推广Gruher的工作。然后,在推广第一作者和Jones的工作的基础上,我们证明了主束的规范群如何作用于这个紧化的Calabi-Yau结构,并计算了一些显式的例子。然后我们将Calabi-Yau结构的概念推广到光滑环谱,并证明了环空间上(虚)束的Thom环谱具有这种结构。当$M$是一个球体时,我们将使用这些扭曲的光滑Calabi-Yau环谱来研究球体在其共切束中的拉格朗日浸入。我们改写了Abouzaid-Kragh的工作,证明了由拉格朗日浸入的$h$原理分类图引起的Thom环谱的拓扑Hochschild同调,可以检测浸入是否可以是嵌入的拉格朗日同位素。然后我们计算一些例子。最后,我们直接从拓扑Hochschild同调和上同调的角度解释了这些Calabi-Yau结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信