Almost sure local well-posedness for the supercritical quintic NLS

IF 0.8 Q2 MATHEMATICS
J. Brereton
{"title":"Almost sure local well-posedness for the supercritical quintic NLS","authors":"J. Brereton","doi":"10.2140/tunis.2019.1.427","DOIUrl":null,"url":null,"abstract":"This paper studies the quintic nonlinear Schr\\\"odinger equation on $\\mathbb{R}^d$ with randomized initial data below the critical regularity $H^{\\frac{d-1}{2}}$. The main result is a proof of almost sure local well-posedness given a Wiener Randomization of the data in $H^s$ for $s \\in (\\frac{d-2}{2}, \\frac{d-1}{2})$. The argument further develops the techniques introduced in the work of \\'A. B\\'enyi, T. Oh and O. Pocovnicu on the cubic problem. The paper concludes with a condition for almost sure global well-posedness.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2016-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.427","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

This paper studies the quintic nonlinear Schr\"odinger equation on $\mathbb{R}^d$ with randomized initial data below the critical regularity $H^{\frac{d-1}{2}}$. The main result is a proof of almost sure local well-posedness given a Wiener Randomization of the data in $H^s$ for $s \in (\frac{d-2}{2}, \frac{d-1}{2})$. The argument further develops the techniques introduced in the work of \'A. B\'enyi, T. Oh and O. Pocovnicu on the cubic problem. The paper concludes with a condition for almost sure global well-posedness.
超临界五次NLS的几乎确定局部适定性
研究了$\mathbb{R}^d$上随机初始数据低于临界正则性$H^{\frac{d-1}{2}}$的五次非线性Schr\ odinger方程。主要结果是给出$H^s$中$s \in (\frac{d-2}{2}, \frac{d-1}{2})$的数据的Wiener随机化,证明了几乎肯定的局部适定性。该论证进一步发展了A的工作中引入的技术。B 'enyi T. Oh和O. Pocovnicu关于三次问题。最后给出了几乎确定全局适定性的一个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信