Sandra Stamenkovic-Stojanovic, Ivana T. Karabegović, B. Danilović, Stojan Mančić, M. Lazić
{"title":"High cell density cultivation of Bacillus subtilis NCIM 2063: Modeling, optimization and a scale-up procedure","authors":"Sandra Stamenkovic-Stojanovic, Ivana T. Karabegović, B. Danilović, Stojan Mančić, M. Lazić","doi":"10.2298/jsc230407036s","DOIUrl":null,"url":null,"abstract":"Bacillus subtilis is a non-pathogenic, sporulating, gram-positive bacteria with pronounced antimicrobial and metabolic activity and great potential for wide application in various fields. The aim of this paper was to determine the optimum B. subtilis NCIM 2063 growth conditions and to scale up biomass production from shake flasks to a bioreactor level. The critical growth parameters and their interaction effects were studied using Box-Bekhen experimental design and response surface methodology. Developed model equations were statistically significant with good prediction capability. It was found that during shake flask cultivation glucose should be added in concentration up to 5 g l-1 in DSM medium, OTR at 10 mol m-3h-1 and temperature of 33 ?C, to achieve the maximum number of viable cells and spores. To scale up the process from shake flasks to the bioreactor level kLa was used as a main criterion. Scale up effect was evaluated by comparing the growth kinetics in the shake flasks and in a laboratory bioreactor. The total number of cells obtained in the bioreactor was 4.57?109 CFU ml-1 which is 1.41 times higher than the number of cells in the shake flasks (3.24?109 CFU ml-1), proving that the scale-up procedure was conducted successfully.","PeriodicalId":17489,"journal":{"name":"Journal of The Serbian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Serbian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2298/jsc230407036s","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus subtilis is a non-pathogenic, sporulating, gram-positive bacteria with pronounced antimicrobial and metabolic activity and great potential for wide application in various fields. The aim of this paper was to determine the optimum B. subtilis NCIM 2063 growth conditions and to scale up biomass production from shake flasks to a bioreactor level. The critical growth parameters and their interaction effects were studied using Box-Bekhen experimental design and response surface methodology. Developed model equations were statistically significant with good prediction capability. It was found that during shake flask cultivation glucose should be added in concentration up to 5 g l-1 in DSM medium, OTR at 10 mol m-3h-1 and temperature of 33 ?C, to achieve the maximum number of viable cells and spores. To scale up the process from shake flasks to the bioreactor level kLa was used as a main criterion. Scale up effect was evaluated by comparing the growth kinetics in the shake flasks and in a laboratory bioreactor. The total number of cells obtained in the bioreactor was 4.57?109 CFU ml-1 which is 1.41 times higher than the number of cells in the shake flasks (3.24?109 CFU ml-1), proving that the scale-up procedure was conducted successfully.
期刊介绍:
The Journal of the Serbian Chemical Society -JSCS (formerly Glasnik Hemijskog društva Beograd) publishes articles original papers that have not been published previously, from the fields of fundamental and applied chemistry:
Theoretical Chemistry, Organic Chemistry, Biochemistry and Biotechnology, Food Chemistry, Technology and Engineering, Inorganic Chemistry, Polymers, Analytical Chemistry, Physical Chemistry, Spectroscopy, Electrochemistry, Thermodynamics, Chemical Engineering, Textile Engineering, Materials, Ceramics, Metallurgy, Geochemistry, Environmental Chemistry, History of and Education in Chemistry.