A novel multilevel stacked SqueezeNet model for handwritten Chinese character recognition

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuankun Du, F. Liu, Zhilong Liu
{"title":"A novel multilevel stacked SqueezeNet model for handwritten Chinese character recognition","authors":"Yuankun Du, F. Liu, Zhilong Liu","doi":"10.2298/csis221210030d","DOIUrl":null,"url":null,"abstract":"To solve the problems of large number of similar Chinese characters, difficult feature extraction and inaccurate recognition, we propose a novel multilevel stacked SqueezeNet model for handwritten Chinese character recognition. First, we design a deep convolutional neural network model for feature grouping extraction and fusion. The multilevel stacked feature group extraction module is used to extract the deep abstract feature information of the image and carry out the fusion between the different feature information modules. Secondly, we use the designed down-sampling and channel amplification modules to reduce the feature dimension while preserving the important information of the image. The feature information is refined and condensed to solve the overlapping and redundant problem of feature information. Thirdly, inter-layer feature fusion algorithm and Softmax classification function constrained by L2 norm are used. We further compress the parameter clipping to avoid the loss of too much accuracy due to the clipping of important parameters. The dynamic network surgery algorithm is used to ensure that the important parameters of the error deletion are reassembled. Experimental results on public data show that the designed recognition model in this paper can effectively improve the recognition rate of handwritten Chinese characters.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"20 1","pages":"1771-1795"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis221210030d","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problems of large number of similar Chinese characters, difficult feature extraction and inaccurate recognition, we propose a novel multilevel stacked SqueezeNet model for handwritten Chinese character recognition. First, we design a deep convolutional neural network model for feature grouping extraction and fusion. The multilevel stacked feature group extraction module is used to extract the deep abstract feature information of the image and carry out the fusion between the different feature information modules. Secondly, we use the designed down-sampling and channel amplification modules to reduce the feature dimension while preserving the important information of the image. The feature information is refined and condensed to solve the overlapping and redundant problem of feature information. Thirdly, inter-layer feature fusion algorithm and Softmax classification function constrained by L2 norm are used. We further compress the parameter clipping to avoid the loss of too much accuracy due to the clipping of important parameters. The dynamic network surgery algorithm is used to ensure that the important parameters of the error deletion are reassembled. Experimental results on public data show that the designed recognition model in this paper can effectively improve the recognition rate of handwritten Chinese characters.
一种新的多层堆叠的SqueezeNet手写体汉字识别模型
针对手写体汉字相似度大、特征提取困难、识别不准确等问题,提出了一种多层堆叠的SqueezeNet模型。首先,我们设计了一个深度卷积神经网络模型用于特征分组提取和融合。多层堆叠特征组提取模块用于提取图像的深度抽象特征信息,并进行不同特征信息模块之间的融合。其次,利用所设计的降采样和通道放大模块,在保留图像重要信息的同时降低特征维数;通过对特征信息的提炼和浓缩,解决了特征信息的重叠和冗余问题。第三,采用层间特征融合算法和L2范数约束下的Softmax分类函数。我们进一步压缩了参数裁剪,以避免由于重要参数的裁剪而损失过多的精度。采用动态网络手术算法,确保错误删除的重要参数被重新组合。在公开数据上的实验结果表明,本文设计的识别模型可以有效地提高手写汉字的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Science and Information Systems
Computer Science and Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
2.30
自引率
21.40%
发文量
76
审稿时长
7.5 months
期刊介绍: About the journal Home page Contact information Aims and scope Indexing information Editorial policies ComSIS consortium Journal boards Managing board For authors Information for contributors Paper submission Article submission through OJS Copyright transfer form Download section For readers Forthcoming articles Current issue Archive Subscription For reviewers View and review submissions News Journal''s Facebook page Call for special issue New issue notification Aims and scope Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信