On the structure of subsets of the discrete cube with small edge boundary

IF 1 3区 数学 Q1 MATHEMATICS
Discrete Analysis Pub Date : 2016-12-20 DOI:10.19086/DA.3668
David Ellis, Nathan Keller, Noam Lifshitz
{"title":"On the structure of subsets of the discrete cube with small edge boundary","authors":"David Ellis, Nathan Keller, Noam Lifshitz","doi":"10.19086/DA.3668","DOIUrl":null,"url":null,"abstract":"The edge isoperimetric inequality in the discrete cube specifies, for each pair of integers $m$ and $n$, the minimum size $g_n(m)$ of the edge boundary of an $m$-element subset of $\\{0,1\\}^{n}$; the extremal families (up to automorphisms of the discrete cube) are initial segments of the lexicographic ordering on $\\{0,1\\}^n$. We show that for any $m$-element subset $\\mathcal{F} \\subset \\{0,1\\}^n$ and any integer $l$, if the edge boundary of $\\mathcal{F}$ has size at most $g_n(m)+l$, then there exists an extremal family $\\mathcal{G} \\subset \\{0,1\\}^n$ such that $|\\mathcal{F} \\Delta \\mathcal{G}| \\leq Cl$, where $C$ is an absolute constant. This is best-possible, up to the value of $C$. Our result can be seen as a `stability' version of the edge isoperimetric inequality in the discrete cube, and as a discrete analogue of the seminal stability result of Fusco, Maggi and Pratelli concerning the isoperimetric inequality in Euclidean space.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.3668","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

The edge isoperimetric inequality in the discrete cube specifies, for each pair of integers $m$ and $n$, the minimum size $g_n(m)$ of the edge boundary of an $m$-element subset of $\{0,1\}^{n}$; the extremal families (up to automorphisms of the discrete cube) are initial segments of the lexicographic ordering on $\{0,1\}^n$. We show that for any $m$-element subset $\mathcal{F} \subset \{0,1\}^n$ and any integer $l$, if the edge boundary of $\mathcal{F}$ has size at most $g_n(m)+l$, then there exists an extremal family $\mathcal{G} \subset \{0,1\}^n$ such that $|\mathcal{F} \Delta \mathcal{G}| \leq Cl$, where $C$ is an absolute constant. This is best-possible, up to the value of $C$. Our result can be seen as a `stability' version of the edge isoperimetric inequality in the discrete cube, and as a discrete analogue of the seminal stability result of Fusco, Maggi and Pratelli concerning the isoperimetric inequality in Euclidean space.
小边边界离散立方体子集的结构
离散立方体中的边等距不等式规定了对于每一对整数$m$和$n$, $\{0,1\}^{n}$的一个$m$ -元素子集的边边界的最小尺寸$g_n(m)$;极值族(直到离散立方体的自同构)是$\{0,1\}^n$上字典排序的初始片段。我们证明了对于任意$m$ -元素子集$\mathcal{F} \subset \{0,1\}^n$和任意整数$l$,如果$\mathcal{F}$的边边界的大小不超过$g_n(m)+l$,则存在一个极值族$\mathcal{G} \subset \{0,1\}^n$使得$|\mathcal{F} \Delta \mathcal{G}| \leq Cl$,其中$C$是一个绝对常数。这是最好的可能,直到$C$的值。我们的结果可以看作是离散立方体中边等周不等式的“稳定性”版本,以及Fusco, Maggi和Pratelli关于欧几里得空间中等周不等式的种子稳定性结果的离散模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信