{"title":"Quantifying Roof Falling Potential based on CMRR Method by Incorporating DEMATEL-MABAC Method; A Case Study","authors":"S. Mohammadi, M. Babaeian, M. Ataei, K. Ghanbari","doi":"10.22044/JME.2020.9878.1911","DOIUrl":null,"url":null,"abstract":"This work incorporates the DEMATEL-MABAC method for quantifying the potential of roof fall in coal mines by means of the coal mine roof rating (CMRR) parameters. For this purpose, considering the roof weighting interval as a quantitative criterion for the stability of the roof, the immediate roof falling potential was quantified and ranked in 15 stopes of Eastern Alborz Coal Mines Company. In this regard, on the basis of the experts’ judgments, the fuzzy DEMATEL method was used for designation weights of the parameters, and the MABAC method was incorporated to quantify and rank the stopes (alternatives). “UCS of roof” and “joint spacing” in the immediate roof were found to be the most important parameters that controlled roof falling in stopes; and “joint persistence” was also found to be a quite significant parameter. Finding confirms that overall strength of rood rock mass plays a main role in the falling potential. Comparison of the coefficients of determination (R2) between the weighting interval and proposed model with that and original CMRR indicated more than 15% increase, which represented that the new proposed model was more accurate to quantify roof quality. The findings of this work show that using this combined method and specializing the CMRR method for a given mine geo-condition to assess the quality of the roof and its potential of collapse possesses a higher performance when compared with the original CMRR method.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2020.9878.1911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2
Abstract
This work incorporates the DEMATEL-MABAC method for quantifying the potential of roof fall in coal mines by means of the coal mine roof rating (CMRR) parameters. For this purpose, considering the roof weighting interval as a quantitative criterion for the stability of the roof, the immediate roof falling potential was quantified and ranked in 15 stopes of Eastern Alborz Coal Mines Company. In this regard, on the basis of the experts’ judgments, the fuzzy DEMATEL method was used for designation weights of the parameters, and the MABAC method was incorporated to quantify and rank the stopes (alternatives). “UCS of roof” and “joint spacing” in the immediate roof were found to be the most important parameters that controlled roof falling in stopes; and “joint persistence” was also found to be a quite significant parameter. Finding confirms that overall strength of rood rock mass plays a main role in the falling potential. Comparison of the coefficients of determination (R2) between the weighting interval and proposed model with that and original CMRR indicated more than 15% increase, which represented that the new proposed model was more accurate to quantify roof quality. The findings of this work show that using this combined method and specializing the CMRR method for a given mine geo-condition to assess the quality of the roof and its potential of collapse possesses a higher performance when compared with the original CMRR method.