Featured Properties of the Adsorption of Tebuconazole on Ag Surface Characterized through SERS Spectroscopy

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
R. de Oliveira, A. C. Sant’Ana
{"title":"Featured Properties of the Adsorption of Tebuconazole on Ag Surface Characterized through SERS Spectroscopy","authors":"R. de Oliveira, A. C. Sant’Ana","doi":"10.21577/0103-5053.20230042","DOIUrl":null,"url":null,"abstract":"Pesticides present utmost importance in modern agriculture and are extensively used in countries with strong agricultural activity, such as Brazil. However, these substances are considered a significant part of environmental contamination by organic compounds. In the present work, Raman spectroscopy was employed in the vibrational characterization of the fungicide tebuconazole and surface-enhanced Raman scattering spectroscopy to the study of the adsorption of this compound on the surface of Ag nanoparticles. The proposed chemical interaction between tebuconazole and the metallic surface was inferred by relating experimental results and vibrational assignment supported by density functional theory calculations. The vibrational assignments of surface-enhanced Raman scattering spectra, by considering surface selection rules, suggest that the adsorption of the tebuconazole with Ag surface occurs by interactions of phenyl and triazole groups simultaneously. For the case of the interaction with the phenyl group, a modification of the charge distribution in the ring after adsorption was hypothesized, which was supported through the analysis of the frontier molecular orbitals of the Ag-tebuconazole complex calculated by density functional theory.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20230042","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Pesticides present utmost importance in modern agriculture and are extensively used in countries with strong agricultural activity, such as Brazil. However, these substances are considered a significant part of environmental contamination by organic compounds. In the present work, Raman spectroscopy was employed in the vibrational characterization of the fungicide tebuconazole and surface-enhanced Raman scattering spectroscopy to the study of the adsorption of this compound on the surface of Ag nanoparticles. The proposed chemical interaction between tebuconazole and the metallic surface was inferred by relating experimental results and vibrational assignment supported by density functional theory calculations. The vibrational assignments of surface-enhanced Raman scattering spectra, by considering surface selection rules, suggest that the adsorption of the tebuconazole with Ag surface occurs by interactions of phenyl and triazole groups simultaneously. For the case of the interaction with the phenyl group, a modification of the charge distribution in the ring after adsorption was hypothesized, which was supported through the analysis of the frontier molecular orbitals of the Ag-tebuconazole complex calculated by density functional theory.
用SERS光谱法表征戊康唑在银表面的吸附特性
农药在现代农业中发挥着极其重要的作用,在农业活动旺盛的国家,如巴西,农药被广泛使用。然而,这些物质被认为是有机化合物污染环境的重要组成部分。本文采用拉曼光谱对杀菌剂戊康唑进行了振动表征,并采用表面增强拉曼散射光谱对该化合物在银纳米颗粒表面的吸附进行了研究。通过相关的实验结果和密度泛函理论计算支持的振动赋值,推测了戊康唑与金属表面之间的化学相互作用。考虑表面选择规则的表面增强拉曼散射光谱的振动赋值表明,苯和三唑基团同时相互作用,从而使戊康唑在银表面吸附。对于与苯基相互作用的情况,通过密度泛函理论计算ag -戊康唑配合物的前沿分子轨道分析,假设吸附后环内电荷分布发生了改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
7.10%
发文量
99
审稿时长
3.4 months
期刊介绍: The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信