Francineide Lopes de Araújo, A. Nogueira, J. D. de Freitas
{"title":"Facile Methods for the Assembly of Large-Area Perovskite Solar Cells and Mini‑Module: A Step-by-Step Description of Layers Processing","authors":"Francineide Lopes de Araújo, A. Nogueira, J. D. de Freitas","doi":"10.21577/0103-5053.20220148","DOIUrl":null,"url":null,"abstract":"Hybrid organic-inorganic perovskites have attracted interest in photovoltaic applications due to their excellent optoelectronic properties and low-temperature processability. From 2009 to 2021, lab-scale perovskite solar cells (PSC) reached a power conversion efficiency (PCE) of 25.7%, and a PCE of 17.9% for perovskite solar modules with an area of 800 cm2. Here, we present an investigation using three deposition techniques, spin-coating, blade-coating, and spraycoating, to process the charge transport layers and the active layer of perovskite solar cells onto 5 cm × 5 cm sized substrates, with device structure glass/fluorine-doped tin oxide (FTO)/c-TiO2/ meso-TiO2+Perovskite/2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9’-spirobifluorene (spiro-OMeTAD) or poly(3-hexylthiophene) (P3HT)/Au. Large-area PSC achieved an opencircuit voltage of around 1.1 V and PCE of 6%. The power generated was sufficient to start a fan. Furthermore, the connection in series of two large-area PSCs generated a voltage of 1.9 V. Then, we developed a simple method for manufacturing a monolithic perovskite mini-module containing two series-connected PSCs without using laser-scribing processes (usually named P1, P2, and P3 processes). This mini-module delivered a voltage of 1.52 V. Both voltages (1.9 and 1.52 V) were enough to turn on a red (or yellow) light-emitting diode (LED). To our knowledge, this is the first scientific report describing the assembly of a large-area n-i-p perovskite single cell and mini-module in Brazil.","PeriodicalId":17257,"journal":{"name":"Journal of the Brazilian Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0103-5053.20220148","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid organic-inorganic perovskites have attracted interest in photovoltaic applications due to their excellent optoelectronic properties and low-temperature processability. From 2009 to 2021, lab-scale perovskite solar cells (PSC) reached a power conversion efficiency (PCE) of 25.7%, and a PCE of 17.9% for perovskite solar modules with an area of 800 cm2. Here, we present an investigation using three deposition techniques, spin-coating, blade-coating, and spraycoating, to process the charge transport layers and the active layer of perovskite solar cells onto 5 cm × 5 cm sized substrates, with device structure glass/fluorine-doped tin oxide (FTO)/c-TiO2/ meso-TiO2+Perovskite/2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9’-spirobifluorene (spiro-OMeTAD) or poly(3-hexylthiophene) (P3HT)/Au. Large-area PSC achieved an opencircuit voltage of around 1.1 V and PCE of 6%. The power generated was sufficient to start a fan. Furthermore, the connection in series of two large-area PSCs generated a voltage of 1.9 V. Then, we developed a simple method for manufacturing a monolithic perovskite mini-module containing two series-connected PSCs without using laser-scribing processes (usually named P1, P2, and P3 processes). This mini-module delivered a voltage of 1.52 V. Both voltages (1.9 and 1.52 V) were enough to turn on a red (or yellow) light-emitting diode (LED). To our knowledge, this is the first scientific report describing the assembly of a large-area n-i-p perovskite single cell and mini-module in Brazil.
期刊介绍:
The Journal of the Brazilian Chemical Society embraces all aspects of chemistry except education, philosophy and history of chemistry. It is a medium for reporting selected original and significant contributions to new chemical knowledge.