An Analysis of the Auxetic Cranioplasty Implant

Q4 Engineering
J. Maciejewska, H. Jopek
{"title":"An Analysis of the Auxetic Cranioplasty Implant","authors":"J. Maciejewska, H. Jopek","doi":"10.21008/J.0860-6897.2020.3.15","DOIUrl":null,"url":null,"abstract":"The following paper is a reflection on the advisability of using auxetic structures in medical devices. For this purpose, a model of a skull implant was designed. This implant could be used for cranioplasty of bone defects after neurosurgical procedures. The implant is made of a titanium alloy and has an auxetic \"double arrow\" structure. The behavior of the implant was investigated in two cases, under the influence of increased intracranial pressure and impact of an external force. The calculations were made with the finite element method implemented in the SolidWorks 2020 program. Moreover, the natural frequency of the structure was examined in the Comsol Multiphysics program.","PeriodicalId":38508,"journal":{"name":"Vibrations in Physical Systems","volume":"31 1","pages":"2020315-1-2020315-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrations in Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21008/J.0860-6897.2020.3.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The following paper is a reflection on the advisability of using auxetic structures in medical devices. For this purpose, a model of a skull implant was designed. This implant could be used for cranioplasty of bone defects after neurosurgical procedures. The implant is made of a titanium alloy and has an auxetic "double arrow" structure. The behavior of the implant was investigated in two cases, under the influence of increased intracranial pressure and impact of an external force. The calculations were made with the finite element method implemented in the SolidWorks 2020 program. Moreover, the natural frequency of the structure was examined in the Comsol Multiphysics program.
补体颅骨成形术的临床分析
下面的文章是对在医疗器械中使用辅助结构的可行性的思考。为此,设计了颅骨植入物模型。该植入物可用于神经外科手术后骨缺损的颅骨成形术。该植入物由钛合金制成,具有辅助的“双箭头”结构。在颅内压升高和外力冲击的影响下,研究了两种情况下植入物的行为。采用SolidWorks 2020程序中实现的有限元方法进行计算。此外,在Comsol Multiphysics程序中检查了结构的固有频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vibrations in Physical Systems
Vibrations in Physical Systems Engineering-Mechanics of Materials
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信